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I Astrophysics

I.1 AGN (15 points)

It is believed that the accretion disk around supermassive black holes (BH) at galactic centres gives rise to
UV thermal emission. This emission is associated with Active Galactic Nuclei (AGNs).
The optical spectra of bright AGNs show additional bright broad emission lines. Those emission lines arise
from the dense gas in the Broad Line Region (BLR), which is ionized by the UV photons from the accretion
disk. See Figure 1 to visualise this model.

Figure 1

We can assume that the flux of broad emission lines varies in response to the variation of the UV continuum
with a time delay. This time delay should be proportional to the separation RBLR between the BH and the
BLR.
Assume that the size of the accretion disk is negligible as compared to RBLR.

I.1.1 [1 point(s)]

Estimate the time lag (days) between the B-band continuum and broad emission line Hβ using the light
curves shown in Figure 2. The x-axis is in reduced Julian Dates (JD).

I.1.2 [3 point(s)]

Estimate RBLR in parsecs (pc).

I.1.3 [2 point(s)]

Estimate the angular separation of this region �BLR (in arcsec) from the blackhole, if this AGN is 100Mpc
away from us. It is possible to estimate the mass of the system using the Virial theorem, if the velocity dis-
persion of the gasses in the BLR and the size of the system are known. Assume that themasses of the accre-
tion disk and broad line region are negligible, as compared to the black hole. The velocity dispersion vσ may
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Figure 2

be estimated from the broadening of the given emission line. We will take the corresponding wavelength
dispersion to be

σ =
FWHM

2.35

where FWHM is the full width at half maximum of the broad emission line.

I.1.4 [5 point(s)]

Calculate the velocity dispersion vσ in units of km s−1, from the spectral line shown in Figure 3.

Figure 3

I.1.5 [4 point(s)]

Calculate the mass of the central BH (Mvir;BH ) in a unit ofM�.
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I.2 Mirror (10 points)

A bored cosmologist comes up with a thought experiment to determine the Hubble constant (H0) for his
model of a Steady-State-Universe. In this experiment, a large, fully reflecting flat mirror – carrying several
gyroscopes that would maintain its spatial orientation in the same plane – would be placed at a distance
D from the Solar System in a region without gravitational influences. From the Earth, a laser beam would
be directed towards that region for a long period of time. After a time T, the radiation would return and be
detected, allowing the determination of the fixed constantH0.

I.2.1 [7 point(s)]

Find an expression forH0 as a function of D, c (speed of light) and T. Consider that the separation S between
the Solar System and the mirror increases only due to the expansion of the universe according to the law
S = seH0t, where s is the initial separation. You may use ex ≈ 1 + x for x� 1, if necessary.

I.2.2 [3 point(s)]

Imagine that such amirror is located in the vicinity of the star Vega. Vega was the first star outside the Solar
System to be photographed and one of the first stars whose parallax (p = 0.125”) was accurately measured
in 1840 by G. W. von Struve. Estimate the total duration of thisH0 measurement experiment.

5



I.3 Flat Earth (5 points)

A new model of the world is gaining in popularity among some people. These people believe in the “Flat
Earth” view of the world, where the Earth is not a spheroid, but rather a circle with radius R⊕. The central
axis of the Earth (normal to the circle passing through its centre C) is passes through the observer’s zenith.
This model must at least remain consistent with the observed phenomena, as listed below:

• The value of the solar constant is S� = 1366W/m2

• The Earth’s central axis precesses in a circle with a period 25800 years.

• The radius of the precession circle is 23.5◦

Weassume that the Earth is a perfect blackbody radiator and the Sun is sufficiently far away that all sun rays
are parallel. Let us also assume that the Sun’s current (initial) location is at the zenith.

I.3.1 [5 point(s)]

Determine howmany years it will take for the Earth’s equilibrium temperature to decrease by 1◦°C.
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II Condensed Matter Physics

II.1 Two-site Problem (5 points)

Consider a potential representing two inequivalent wells separated by a barrier. In the limit of infinitely high
barrier the two localized states have energies ε1 and ε2. For a finite barrier a fermion can tunnel between the
states 1 and 2. Let the corresponding amplitude be τ . One can write down the Hamiltonian as

H = ε1c
†
1c1 + ε2c

†
2c2 − τ(c†1c2 + c†2c1).

II.1.1 [2 point(s)]

Diagonalize the Hamiltonian and find its spectrum.

II.1.2 [3 point(s)]

Imagine that at t = 0 the fermion was localized in the state 1. Calculate the probability to find the electron in
the same state at the moment t.

Hint

Consider the transition amplitude 〈0|c1(t)c†1(0)|0〉, where c1(t) = eiHtc1e−iHt.
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II.2 Quantum Ising Model and Majorana Fermions (13 points)

Quantum Ising model (Also known as 1D Ising model in a transverse magnetic field) is a toy model famous
for exhibiting quantum phase transition, i.e. transition not driven by temperature but instead driven by
external magnetic field. We consider T = 0 case. The Hamiltonian of the model is:

Ĥ[{σ}] = J

(
−λ

N∑
n=1

σ̂x
n −

N−1∑
n=1

σ̂z
nσ̂

z
n+1

)
1. (II.1)

J > 0 is the coupling constant of z− z interaction and λ ≥ 0 is a dimensionless parameter, that characterizes
the amplitude of a transversemagnetic field h = Jλ. σ̂x

n and σ̂z
n are the Paulimatrices for spin- 12 , each defined

on a site physical site n of the chain. These Pauli matrices obey the known SU(2) algebra relations when
defined on the same site and commute when the site indices are different. Traditionally, we take σ̂z

n to be a
diagonal matrix, with eigenvalues of +1 (spin up, | ↑〉z) and −1 (spin down, | ↓〉z). We can also express spin
up/down in x direction in the z basis as: | ↑〉x = | ↑〉z + | ↓〉z and | ↓〉x = | ↑〉z − | ↓〉z. As an example, the states
of this system expressed in the z basis can be written as

| ↑1〉z ⊗ | ↓2〉z ⊗ ...⊗ | ↑j〉z ⊗ ... = | ↑1, ↓2, ..., ↑j , ...〉z (II.2)

meaning that the first spin looks along z direction, the second in the opposite and etc. Similarly, for the x
basis we have

| ↑1〉x ⊗ | ↓2〉x ⊗ ...⊗ | ↑j〉x ⊗ ... = | ↑1, ↓2, ..., ↑j , ...〉x (II.3)

II.2.1 [1 point(s)]

What is the global discrete symmetry of this problem? Express the unitary operator Û in terms of Pauli
matrices, under which

σ̂α
n → Û σ̂α

n Û
†, so that ÛĤ[{σ}]Û† = Ĥ[{σ}].

II.2.2 [2 point(s)]

Argue what could be the ground state configurations of spins for λ = 0 and λ = +∞, expressed as Eq.(II.2).
What would happen if we used Eq.(II.3) instead? What are the possible values of the total spin along z di-
rection (i.e. magnetization, interpreted as the so-called order parameter of the problem) in these limits and
why should we expect a phase transition point at an intermediate value λ = λc?

Hint

The model possesses a global discrete symmetry.

II.2.3 [3 point(s)]

To extract a precise value of λc, we exploit a concept of self-duality. For convenience, let us denote links that
connect sites n and n+ 1 as n+ 1

2 and define two newmatrices in the following way

µ̂z
n+1/2 =

n∏
j=1

σ̂x
j , µ̂x

n+1/2 = σ̂z
nσ̂

z
n+1. (II.4)

1σ̂z
nσ̂

z
n+1 ≡ σ̂z

n ⊗ σ̂z
n+1
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µ̂matrices satisfy exactly the same algebra as σ̂. Eq.(II.4) is known as the duality transformation. The action
of µ̂z

n+1/2 on spin configuration is, for instance

µ̂z
n+1/2| ↑1, ↑2, ..., ↑n−1, ↑n, ..., ↑N 〉z = | ↓1, ↓2, ..., ↓n, ↑n+1 ..., ↑N 〉z, (II.5)

meaning that µ̂z
n+1/2 operator creates a domain wall in the spin configuration and thus disordering the sys-

tem, hence the name - disorder operator. Invert the transformation Eq.(II.4), by expressing σ̂ operators in
terms of µ̂ operators and rewrite Eq.(II.1) Hamiltonian in terms of µ̂ operators, denoting it as Ĥ[{µ}]. Let us
forget for a second that initially we were working in the spin-up/down basis of σ̂z matrices and assume that
Ĥ[{µ}] is the starting Hamiltonian, therefore wework in spin-up/down basis of µ̂z instead. What are the pos-
sible values of the total disorder parameter in λ → +∞ and λ = 0 limits of Ĥ[{µ}] Hamiltonian? How does it
comparewith the same regimes for Ĥ[{σ}]? Extract the value of λwhen theHamiltonianmaps to itself under
the duality transformation, corresponding to the critical value λc. The Lee-Yang theorem justifies that there
is only a single critical point in themodel. Draw a phase diagram of Ĥ[{σ}] quantum Isingmodel, indicating
the region of order and disorder.

II.2.4 [3 point(s)]

The Jordan-Wigner transformation maps bosonic spin-1/2 operators onto the fermionic creation and an-
nihilation operators in a very non-local fashion. Under the Jordan-Wigner transformation Eq.(II.1) exactly
maps onto the model of a 1-dimensional p-wave superconductor (1DPS)

Ĥ[{σ}] → Ĥ1DPS = −λJ
N∑

n=1

(2â†nân − 1)− J

N−1∑
n=1

(
â†nân+1 + â†n+1ân + â†nâ

†
n+1 + ân+1ân

)
, (II.6)

where â†n and ân are the creation and annihilation operators of spinless fermions at site n. These operators
obey standard anti-commutation relations

{â†n, âm} = δnm, {ân, âm} = 0. (II.7)

The last two terms correspond to the superconducting coupling, creating and destroying two particles at a
time. Due to this, the total particle number operator Q̂ =

∑N
n=1 â

†
nân does not commute with Ĥ1DPS and the

total particle number conservation is violated. However, the parity of the particle number is conserved - we
either have odd or even number of particles in the system. The corresponding parity operator is

P̂ = e−iπQ̂. (II.8)

Ĥ1DPS model has a notorious feature in it’s single-particle energy spectrum:
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For λ > λc (Same λc as it was in the Quantum Ising model) the spectrum of the Ĥ1DPS is depicted on (A).
However, as soon as λ < λc condition is satisfied, depicted on (B), a mysterious energy level emerges - with
energy exactly equal to zero! This corresponds to the so-called Majorana edge zero mode - a topologically
protected mode, located at the left and right edges of the system. To get the essence of Majorana fermion,
a simple analogy comes in handy: A complex number z can be split up as its real a and imaginary b parts,
yielding z = a+ ib. In a similar way, a creation and annihilation operator of a fermion can be represented as
its ”real” and ”complex” parts as

âj =
1

2

(
ζ̂j − iη̂j

)
, â†j =

1

2

(
ζ̂j + iη̂j

)
, (II.9)

where ζ̂j and η̂j are the two Majorana fields. Derive the anti-commutation relations that the Majorana fields
obey. Rewrite the Hamiltonian Eq.(II.6) and the Parity operator Eq.(II.8) in terms of the Majorana fields.

II.2.5 [4 point(s)]

Generally, Majorana zero mode Ψ̂ is an operator with the following properties:

[Ĥ, Ψ̂] = 0, {P̂ , Ψ̂} = 0, Ψ̂†Ψ̂|N→∞ = 1. (II.10)

For a zero mode to be also an edge mode, it must be localized at the boundaries of the system. Let us de-
note such right and left edge zero mode operator as Ψ̂R and Ψ̂L. The matrix elements of Ψ̂R,L must decay
exponentially as we move l distance away from the corresponding boundary. If λ = 0, then ζ̂1 and η̂N do not
appear in the Hamiltonian at all, they are completely isolated from the rest of the system. They also anti-
commute with the parity operator and satisfy the normalization condition. Since both of them are localized
at the left and right edges of the chain, they are an exact edge zero-mode operators

Ψ̂L(λ = 0) = ζ̂1, Ψ̂R(λ = 0) = η̂N . (II.11)

The 1DPS is in a topologically non-trivial state when |λ| < λc, therefore we need to check if the edge zero-
mode operators persist as we deviate from λ = 0 point and see how does it get modified. For concreteness,
let us concentrate on the left edge mode operator Ψ̂L only. Develop an iterative method to write down the
expression for Ψ̂n

L(λ), n indicating that Eq.(II.11) has been corrected upto n order in λ. After the last possible
step of the iteration, under what condition can we take [Ĥ1DPS, Ψ̂

N−1
L ] = 0? What about Ψ̂R? What happens to

both modes when |λ| > λc?

Hint

Iteration method - Suppose we have two operators Â = B̂ + Ĉ and Ẑ, such that [B̂, Ẑ] = 0, but [Ĉ, Ẑ] = D̂. Find Ẑ′ , such that
[B̂, Ẑ

′
] = −D̂ and add it to the initial Ẑ. Repeat.
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II.3 AKLTModel (12 points)

We consider the following Hamiltonian

HAKLT = J
∑
i

~Si · ~Si+1 +K
∑
i

(
~Si · ~Si+1

)2
,

where ~Si = (Sx
i , S

y
i , S

z
i ) is the vector spin-1 operator at site i.

Each site has local Hilbert space with three states: |−1〉 , |0〉 , |+1〉.

II.3.1 [2 point(s)]

Consider an operator Âwith discrete eigenvalues an. Define P̂ (m) as

P̂ (m) = C
∏
n6=m

(
Â− an

)
,

where C is a normalization constant. Show that P̂ (m) acts as a projection operator and determine the nor-
malization constant C.

Hint

Projector satisfies

P̂ (m) |ψn〉 =
{
0 for n 6= m,

|ψn〉 for n = m.

II.3.2 [2 point(s)]

Consider two neighbouring sites i and i + 1. What are the possible eigenvalues of the total spin operator
~S2
tot =

(
~Si + ~Si+1

)2
?

Hint

How does one combine two spin-1 degrees of freedom?

II.3.3 [2 point(s)]

Using the results of the first two sub-problems construct a projection operator P (2)
i,i+1 that projects onto the

total spin-2 subspace of the combined spin-1 degrees of freedom at sites i and i + 1. Express it in terms of
~Si and ~Si+1. What is the relationship between this projector and the AKLT Hamiltonian? What is the ground
state energy of the AKLTmodel?

Hint

(~S)2 = 2 for spin 1.
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II.3.4 [2 point(s)]

Consider two sites i and i+ 1 and split the spin-1 degrees of freedom into two spin-1/2 degrees of freedom.
The two sites combined will now have 4 spin-1/2 degrees of freedom. How can we combine these 4 degrees
of freedom in order to minimize the AKLT Hamiltonian for this pair of sites? Write down the associated
ground state wavefunction |Ψ0〉i,i+1 using spin-1/2 states, |α, β〉i |γ, δ〉i+1, where α, β, γ, δ take the values ↑, ↓.

Hint

For instance, state |↑, ↑〉i |↑, ↑〉i+1 would mean all four spin-1/2 projections are spin-up, i.e. Sz = +1/2.

II.3.5 [2 point(s)]

Construct an operator T̂i that converts from the spin-1/2 triplet basis to the spin-1 basis, e.g. T̂i |↑, ↑〉i = |+1〉i.

Hint

One can write such operator in the form T̂i = tσα,β |σ〉i 〈α, β|i, where α, β =↑, ↓ and σ = −1, 0, 1.

II.3.6 [2 point(s)]

Combining the results of II.3.4 and II.3.5 write down the ground state wavefunction of the AKLTmodel. State
the difference between periodic and open boundary conditions. What is unusual about the edges in the case
of open boundary conditions?
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III Particle Physics

III.1 Born Approximation (10 points)

III.1.1 [1 point(s)]

For a particle with massm, the first Born approximation is defined as

f (1)(k′
,k) = − 1

4π

2m

h̄2

∫
d3x ei(k−k

′)·xV (x),

where V (x) is the scattering potential. Show, that for a spherically symmetric potential this simplifies to

f (1)(k′
,k) = −2m

h̄2
1

q

∫ ∞

0

rdr sin(qr)V (r).

The scattering is elastic.

III.1.2 [2 point(s)]

A particle of massm is scattered in the Yukawa potential:

V (r) =
V0
r
e−κr.

Using the result above calculate the differential cross-section in the first Born approximation.

III.1.3 [1 point(s)]

For what values of κ and V0 is the Born approximation reasonable at low energies?

III.1.4 [1 point(s)]

In the limit κ → 0 Yukawa potential transforms into Coulomb interaction. Show that the cross-section (or
rather, the first Born approximation) describes Rutherford scattering in this limit.

III.1.5 [2 point(s)]

The second Born amplitude is defined as

f (2)(k′
,k) = − 1

4π

2m

h̄2
(2π)3

〈
k′
∣∣∣∣V 1

E −H0 + iε
V

∣∣∣∣k〉 .
Show that the forward scattering amplitude for the Yukawa potential is given by

f (2)(k,k) = −4π

(
2m

h̄2

)2
V 2
0

(2π)3
4π

∫ ∞

0

k̃2dk̃

(k2 − k̃2 + iε)(κ2 + (k − k̃)2)(κ2 + (k + k̃)2)
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III.1.6 [2 point(s)]

Identify all the poles of the integrand in the above result and integrate it over all k̃ to obtain

f (2)(k,k) =
(
2m

h̄2

)2
V 2
0

2κ2(κ− 2ik)
.

III.1.7 [1 point(s)]

The optical theorem relates the full cross-section to the imaginary part of the forward scattering amplitude.
State the optical theorem and check that it holds for the Yukawa potential (the first terms in powers of V0).
Why is the second Born approximation needed for this?

14



III.2 The Higgs Mechanism (10 points)

Consider the following Lagrangian:

L = (DµΦ)†DµΦ− µ2Φ†Φ− λ(Φ†Φ)2

where

• Φ = 1√
2

(
φ1 + iφ2
φ3 + iφ4

)
is an SU(2) doublet;

• Dµ = ∂µ + ig τa

2 W
a
µ is the covariant derivative;

• τa denote the Pauli matrices (see the Appendix below), a = 1, 2, 3;

• W a
µ are vector bosons;

• g is a coupling constant.

III.2.1 [1 point(s)]

Under the local SU(2) transformations

Φ → eiα
a(x) τa

2 Φ,

the vector fields transform as

W a
µ →W a

µ − 1

g
∂µα

a(x)− εabcαb(x)W c
µ.

εabc is the totally-antisymmetric symbol with ε123 = 1.
Show that a mass term for the vector bosons breaks the gauge invariance of the Lagrangian.

III.2.2 [1 point(s)]

We assume λ > 0, so that the potential

V = µ2Φ†Φ+ λ(Φ†Φ)2

is bounded from below.

Which case describes a theory with spontaneous symmetry breaking: µ2 > 0 or µ2 < 0?

III.2.3 [1 point(s)]

What conditions must the fields Φ,Φ† satisfy in order to minimize V ?
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III.2.4 [1 point(s)]

For the ground state we choose

Φ0 =

(
0
v

)
.

In other words, we set φ1 = φ2 = φ3 = 0 and φ4 = v = const. Why are we allowed to do this? What is the value
for the constant v?

III.2.5 [1 point(s)]

We expand the fields around Φ0:

Φ = Φ0 +∆Φ =

(
0
v

)
+

(
∆φ1(x) + i∆φ2(x)
∆φ3(x) + i∆φ4(x)

)
=

(
∆φ1(x) + i∆φ2(x)

v +∆φ3(x) + i∆φ4(x)

)
Show that this is equivalent to the infinitesimal transformation

Φ =
1√
2
ei

θa(x)
v τa

(
0

v + h(x)

)
.

How are the fields∆φ1,∆φ2,∆φ3,∆φ4 given in terms of θ1, θ2, θ3, h?

III.2.6 [1 point(s)]

Consider the kinetic part of the Lagrangian:

Lkin = (DµΦ)†(DµΦ)

Show that inserting

Φ =
1√
2
ei

θa(x)
v τa

(
0

v + h(x)

)
.

into Lkin gives

Lkin =
1

2
(∂µh) (∂µh) +

1

2
(∂µθ1) (∂µθ1) +

1

2
(∂µθ2) (∂µθ2) +

1

2
(∂µθ3) (∂µθ3)

+
g

2
W 1

µ (h∂µθ1 + v∂µθ1 − θ1∂
µh+ θ3∂

µθ2 − θ2∂
µθ3)

+
g

2
W 2

µ (h∂µθ2 + v∂µθ2 − θ2∂
µh+ θ1∂

µθ3 − θ3∂
µθ1)

+
g

2
W 3

µ (h∂µθ3 + v∂µθ3 − θ3∂
µh+ θ2∂

µθ1 − θ1∂
µθ2)

+
g2

8

((
W 1

µ

)2
+
(
W 2

µ

)2
+
(
W 3

µ

)2) (
v2 + 2vh+ h2 + θ21 + θ22 + θ23

)
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III.2.7 [1 point(s)]

Consider the potential part of the Lagrangian:

V = µ2Φ†Φ+ λ(Φ†Φ)2 = −λv2Φ†Φ+ λ(Φ†Φ)2

Show that inserting

Φ =
1√
2
ei

θa(x)
v τa

(
0

v + h(x)

)
.

into V gives

V =
λ

4

(
h4 + 4h3v − v4 + 4hv(θ21 + θ22 + θ23) + (θ21 + θ22 + θ23)

2 + 4h2v2 + 2h2(θ21 + θ22 + θ23)
)
.

III.2.8 [1 point(s)]

Examine the whole resulting Lagrangian. How does the number of degrees of freedom compare to that of
the initial Lagrangian? What is the reason for this and how can it be resolved?

III.2.9 [1 point(s)]

Use gauge freedom to eliminate the θ fields completely from the Lagrangian.

III.2.10 [1 point(s)]

What are themasses of the vector bosons after the elimination of the θ fields? Howmany degrees of freedom
does the resulting Lagrangian have?

Appendix

Pauli matrices:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.
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III.3 Electron-Positron to Pions (10 points)

Part 1: Kinematics

m1

m2

m′
1

m′
2

p1

p2

q1

q2

For a 2 → 2 process of spinless particles with initial momenta p1, p2 and final momenta q1, q2, the amplitude
can depend only on the scalar products:

p21, p
2
2, q

2
1 , q

2
2 , p1 · p2, p1 · q1, p1 · q2, p2 · q1, p2 · q2, q1 · q2.

III.3.1 [1 point(s)]

Give arguments why only 2 of these 10 scalars are independent. Where do the constraints come from?

III.3.2 [1 point(s)]

The n-particle phase space is defined as

dΦn = δ(4)

∑
i

pi −
∑
j

qj

 n∏
j=1

d3qj
(2π)32E~qj

,

The differential cross section for a 2 → 2 process is

dσm1m2→m′
1m

′
2
=

(2π)4 |〈q1, q2|t|p1, p2〉|2

4
√
(p1 · p2)2 −m2

1m
2
2

dΦ2

Show that the full cross section is then

σm1m2→m′
1m

′
2
=

1

64π2

√
λ(s,m′2

1 ,m
′2
2 )√

λ(s,m2
1,m

2
2)

1

s

∫
|tfi|2

S
dΩ~q

where S is the symmetry factor and λ is the Källén function, defined as

λ
(
s,m2

1,m
2
2

)
=
(
s− (m1 +m2)

2
) (
s− (m1 −m2)

2
)
.

tfi is the invariant amplitude of the process (the indices i and f stand for initial and final states, respectfully).

Part 2: e+e− → π+π−

We consider the process e+e− → π+π−, described by the following diagram:
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e+

e−

FV

π+

π−

p1

p2

q1

q2

We define the Mandelstam variables as follows:

s = (p1 + p2)
2 = (q1 + q2)

2,

t = (p1 − q1)
2 = (p2 − q2)

2,

u = (p1 − q2)
2 = (p2 − q1)

2.

Apart from that, let us define

k = p1 + p2 = q1 + q2,

l = p1 − p2, l′ = q1 − q2.

III.3.3 [1 point(s)]

Give the expression for the leptonic current Lµ (left side of the diagram above) using the Feynman rules for
QED.

III.3.4 [1 point(s)]

The hadronic currentHµ (right side of the diagram above) can be written as

Hµ = (q1 + q2)
µGV (s) + (q1 − q2)

µFV (s).

Argue, whyGV (s) can be safely neglected here.

III.3.5 [1 point(s)]

Give the expression for the invariant amplitudeM for the process.

III.3.6 [1 point(s)]

Square the invariant amplitude, average out over all initial spins and sum over all final ones. Give the final
result for the spin-averaged invariant matrix element squared |M|2.

III.3.7 [1 point(s)]

Calculate the following trace
1

4
tr
(
γµ
(
/p1 −me

)
γν
(
/p2 +me

))
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Hint

/A = γµAµ.

III.3.8 [1 point(s)]

Express |M|2 in terms of theMandelstam variable s, the scattering angle θs, and the Källén function λ, where

cos(θs) =
t− u

κ(s)
,

κ(s) =
λ1/2(s,m2

π,m
2
π)λ

1/2(s,m2
e,m

2
e)

s
,

λ
(
s,m2

1,m
2
2

)
=
(
s− (m1 +m2)

2
) (
s− (m1 −m2)

2
)

III.3.9 [1 point(s)]

Integrate |M|2 over the solid angle to obtain
∫
|M|2dΩ.

III.3.10 [1 point(s)]

Calculate the total cross section σe+e−→π+π− .

Hint

Youmay use the limitm2
e � s.
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IV Other

IV.1 Breaking Classical Mechanics (5 points)

Construction of Quantum mechanics from Classical mechanics usually begins with a process known as
Quantization. This is usually done by constructing a map which takes observables to operators, that is:

{f, g} → − i

h̄
[f̂ , ĝ]

Where {−,−} is the Poisson bracket and [−,−] is the commutator. One of the common properties of these
brackets is that they form a Lie algebra, that is, they satisfy the following properties:

1. The bracket [−,−] is billinear.

2. For any f, g we have [f, g] = −[g, f ]

3. The bracket satisfies Jacobi identity, that is, for any f, g, hwe have:

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0

IV.1.1 [5 point(s)]

Suppose that we have a ”broken” classical mechanics in 3 dimensions, where {−,−} doesn’t satisfy the Ja-
cobi identity. Prove that the resulting quantummechanicswould violateHeisenberg’s uncertainty principle.
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IV.2 The Green’s Function (5 points)

Consider the Green’s function in three dimensions:

G(~x) = − e
ik|~x|

4π|~x|
.

IV.2.1 [2 point(s)]

Show (∆ + k2)G(~x) = 0 for ~x 6= 0, where∆ is the Laplace operator.

IV.2.2 [3 point(s)]

Show thatG(~x) satisfies the inhomogeneous differential equation

(∆ + k2)G(~x) = δ(3)(~x).

Hint

Consider the integral ∫
|~x|≤1

d3x(∆ + k2)G(~x).
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IV.3 Point groupD6 (5 points)

Figure 4: A molecule withD6 symmetry. Credits: Wikipedia.

Consider the dihedral groupD6 = 〈b, c | b2 = c6 = (bc)2 = e〉, which is the symmetry group for an unoriented
hexagon.

IV.3.1 [1 point(s)]

D6 has 6 conjugacy classes. One element per class is given below:

C`1 = {e, . . . } ,
C`2 = {c, . . . } ,
C`3 =

{
c2, . . .

}
,

C`4 =
{
c3, . . .

}
,

C`5 = {b, . . . } ,
C`6 = {bc, . . . } .

Complete the classes by adding corresponding elements within. Showwhy a specific element should belong
to a specific class.

Hint

Not all {. . . } are meant to be filled.

IV.3.2 [2 point(s)]

Let ν = 1, . . . , 6 enumerate irreducible representations ofD6 and dν denote the dimension of the representa-
tion. We consider a 6-dimensional representation D(7). The characters for the irreducible representations
are given in Table 1. Fill the table by calculating the characters forD(7).

Hint

Don’t get confused by the notation: D6 stands for the dihedral group. D(ν) stand for specific representations.

23



D(ν) dν C`1 C`2 C`3 C`4 C`5 C`6
D(1) 1 1 1 1 1 1 1
D(2) 1 1 -1 1 -1 -1 1
D(3) 1 1 -1 1 -1 1 -1
D(4) 1 1 1 1 1 -1 -1
D(5) 2 2 1 -1 -2 0 0
D(6) 2 2 -1 -1 2 0 0
D(7) 6 … … … … … …

Table 1: Character table forD6.

IV.3.3 [1 point(s)]

Using the characters derived in the previous section, decomposeD(7) into irreducible representations.

IV.3.4 [1 point(s)]

Consider a molecule with D6 symmetry, which transforms under D(7) (an example is given on Figure 4).
What can you deduce about the energy levels (and their degeneracies) of this molecule, judging from the
decomposition ofD(7)?
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IV.4 Dirac Equation: Angular Momentum and Parity (5 points)

The Dirac equation for spin-1/2 particles is written as

i∂tψ = Ĥψ,

where

Ĥ := αi (p̂i − qAi) + βm+ IqΦ.

Here αi =

(
0 σi

σi 0

)
and β =

(
I 0
0 −I

)
.

We assume that the electric field is time-independent and rotationally invariant:

V (x) := qΦ = V (r).

We take the vector potential to be vanishing: Ai = 0. This simplifies the Hamiltonian to

Ĥ = αip̂i + βm+ IV

We combine the angular momentum and the spin operators

L̂i = εijkx̂j p̂k

Si =
1

2

(
σi 0
0 σi

)
to obtain the total angular momentum operator

Ĵi = IL̂i + Si.

IV.4.1 [1 point(s)]

Show that the commutation relations for Ĵ are[
Ĵi, Ĵj

]
= iεijkĴk,

[
Ĵi, Ĵ

2
]
= 0

IV.4.2 [2 point(s)]

Show that Ĵi and Ĵ2 commute with the given Hamiltonian:[
Ĥ, Ĵi

]
= 0,

[
Ĥ, Ĵ2

]
= 0.

IV.4.3 [2 point(s)]

Parity operator for spinors is defined as P̂s := βP̂ and acts as

P̂sψ(t,x) = βψ(t,−x)

Show that this operator commutes with Ĥ , Ĵi, and Ĵ2.
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IV.5 Transverse Magnetic Susceptibility of an Isotropic Ferromagnet (5 points)

In an isotropic ferromagnet, the ground state with all the spins polarized in the same direction is infinitely
degenerate. The ground state manifold represents a sphere whose points correspond to possible directions
of the spontaneous magnetization

~M = N−1
N∑
i=1

〈~Si〉 .

In an external magnetic field ~h0 the magnetization ~M will be aligned along ~h0. A small transverse magnetic
field ~h⊥ (with ~h⊥ · ~h0 = 0) will slightly change the direction of ~M .

IV.5.1 [3 point(s)]

Calculate the transverse magnetic susceptibility of the ferromagnet

χ⊥(h0) = lim
h⊥→0

∂M(h0;h⊥)

∂h⊥
.

IV.5.2 [2 point(s)]

What is the property of χ⊥ in the limit h0 = 0? Explain the result.
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IV.6 Gaussian Integrals (5 points)

IV.6.1 [2 point(s)]

LetA be a real, symmetric, positive definite matrix. Show the following identity for multi-dimensional inte-
grals over real variables xi:

∫ n∏
i=1

dxi exp
(
−1

2
xkAklxl + Jkxk

)
=

(2π)n/2√
detA

exp
(
1

2
JkA

−1
jl Jl

)
.

IV.6.2 [3 point(s)]

Show that for complex variables zi, the previous result can be generalized as follows:

∫ n∏
i=1

dz∗i dzi exp (−z∗kHklzl + J∗
kzk + Jkz

∗
k) =

(2πi)n

detH
exp

(
J∗
kH

−1
kl Jl

)
whereH is now hermitian, positive definite matrix.
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