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I Astrophysics

I.1 AGN (15 points)

It is believed that the accretion disk around supermassive black holes (BH) at galactic centres gives rise to
UV thermal emission. This emission is associated with Active Galactic Nuclei (AGNS).

The optical spectra of bright AGNs show additional bright broad emission lines. Those emission lines arise
from the dense gas in the Broad Line Region (BLR), which is ionized by the UV photons from the accretion
disk. See Figure 1 to visualise this model.

Observer

BLR

Figure 1

We can assume that the flux of broad emission lines varies in response to the variation of the UV continuum
with a time delay. This time delay should be proportional to the separation Rp;r between the BH and the
BLR.

Assume that the size of the accretion disk is negligible as compared to Rpy r.
I.1.1 [1 point(s)]

Estimate the time lag (days) between the B-band continuum and broad emission line Hgz using the light
curves shown in Figure 2. The x-axis is in reduced Julian Dates (JD).

Taking multiple reference points, we get that the BLR emission lags by about 20-25 days. Answers from 15 to 25 days are
acceptable.

1.1.2 [3 point(s)]

Estimate Rpyr in parsecs (pc).
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As the AGN is located very far, the time lag can be approximated as the time taken by UV emission to reach BLR region. Thus,

Rprr = cAt =3 x 108 x 20 x 86400 = 5.2 x 10'*m = (0.017 & 0.004)pc.

I.1.3 [2 point(s)]

Estimate the angular separation of this region IBLR (in arcsec) from the blackhole, if this AGN is 100Mpc
away from us. It is possible to estimate the mass of the system using the Virial theorem, if the velocity dis-
persion of the gasses in the BLR and the size of the system are known. Assume that the masses of the accre-
tion disk and broad line region are negligible, as compared to the black hole. The velocity dispersion v, may
be estimated from the broadening of the given emission line. We will take the corresponding wavelength

dispersion to be
_ FWHM

2.35

where FWHM is the full width at half maximum of the broad emission line.

As the AGN is 100 MPC away from us,

0.017
100 x 106

X 206265 = (3.5 + 0.9) x 10~ °arcsec

OBLR =

1.1.4 [5 point(s)]

Calculate the velocity dispersion v, in units of km s~!, from the spectral line shown in Figure 3.



The FWHM is approximately (85 + 5) A and the peak is approximately at (4940 + 5) A
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1.1.5 [4 point(s)]

Calculate the mass of the central BH (M,;,px) in a unit of M.

Mvir,BH =

v2RBLR _(22x 109)2 x 5.2 x 104
G

6.674 x 10—11
Myir, g = (1.9 £0.7) x 10" Mg

4975 5000

=3.8x10%"kg




1.2 Mirror (10 points)

A bored cosmologist comes up with a thought experiment to determine the Hubble constant (H,) for his
model of a Steady-State-Universe. In this experiment, a large, fully reflecting flat mirror — carrying several
gyroscopes that would maintain its spatial orientation in the same plane — would be placed at a distance
D from the Solar System in a region without gravitational influences. From the Earth, a laser beam would
be directed towards that region for a long period of time. After a time T, the radiation would return and be
detected, allowing the determination of the fixed constant Hy.

1.2.1 [7 point(s)]

Find an expression for Hy as a function of D, ¢ (speed of light) and T. Consider that the separation S between
the Solar System and the mirror increases only due to the expansion of the universe according to the law
S = seflot, where s is the initial separation. You may use e* ~ 1 + z for z < 1, if necessary.

Let t; be the time taken by the light beam from the Solar System to the mirror, let ¢2 be the time taken by the beam from the
mirror to the Solar System and T the total time to go back and forth. As a first order approximation, we will take distance
travelled by the photon in each part as an average of the initial and final distance. Therefore, equating the kinematics of the
situation, we have:

D + DeHoti D(1 4 efot1)

S1 3 = 3 =ct1
Sy + Spetot2 51(1+6H0t2)
SZ = ) = 2 = cto
D
= Z(l + eHotl)(l + 6H0t2)

D
~ Z(Q -+ Hotl)(2 + H0t2)
D
~ Z[4+2H0(t1 + t2)]
So=D(1+ %HOT)

From the first equation we also find:

D(1 + eMotr)

S1=ct1 = 2

1
ct1 = D(l + §Hot1)

. __ D
' T ¢~ 1DH,
2D,
S1=ct; = _a7e
2c — DHy
. 25
similarly, So = et L
2c— S1Hy




Joining the expressions found, we obtain:

1 2S¢
So=D(1+ -HoT) = ——
2= D+ HoT) = o —o 7
1 4Dc?
D(1+ 5 HoT) = T
2¢— 5:5pm; Ho
1 2c @
(1 + 7H0T) = =
2 2c— DHy — DHy c— DHy

1
c= (1 -+ §H()T)(C — DH())
1 1 2
c=c— DHgy+ choT — 5DH0T

H,
0= 7°(cT —2D — DHoT)

cT'—2D

DT
Better approximation (considering the expansion of the Universe) would be to calculate the distance traveled as cdt rather than
ct. In dt the beam travels a distance of cdt. Because the space is stretched out, the travelled distance corresponds to a smaller
segment of space at t=0, smaller by a factor of exp(Hot). The distance spanned at t=0 is then

H, =

dr = exp(Hot)cdt
We integrate this from t=0 to t=T:

2D ar’ c
/ dr = c/ exp(Hot)dt,2D = — (1 — exp(—HoT))
0 0 Ho

The result so far is accurate within the constraints of the model, but it is not analytically solvable for Hy. To get an estimate, we
can approximate the right hand side to

(HoT)?

HoT?

@
2D=—(1 -1+ HoT —
Ho( + Ho

Expressing Hy, we get

2
Hy = cT—z(cT —2D)

The difference between this answer and the initial estimate is 2D /cT which is almost unitary.

1.2.2 [3 point(s)]

Imagine that such a mirror is located in the vicinity of the star Vega. Vega was the first star outside the Solar
System to be photographed and one of the first stars whose parallax (p = 0.125”) was accurately measured
in 1840 by G. W. von Struve. Estimate the total duration of this Hy measurement experiment.

From the Hy expression found in the previous item, we find the travel time
o 2D _(c H0)71~(c)72_2D
~ ¢c—DHy ‘2D 2 2D’ T ¢
2 x 8 x 3.086 x 1016
T = =1.65 x 10%s
3 x 108
T ~ 52.2yr.




1.3 Flat Earth (5 points)

A new model of the world is gaining in popularity among some people. These people believe in the “Flat
Earth” view of the world, where the Earth is not a spheroid, but rather a circle with radius Rg. The central
axis of the Earth (normal to the circle passing through its centre C) is passes through the observer’s zenith.
This model must at least remain consistent with the observed phenomena, as listed below:

« The value of the solar constant is S., = 1366W /m?
» The Earth’s central axis precesses in a circle with a period 25800 years.

+ The radius of the precession circle is 23.5°

We assume that the Earth is a perfect blackbody radiator and the Sun is sufficiently far away that all sun rays
are parallel. Let us also assume that the Sun’s current (initial) location is at the zenith.

I.3.1 [5 point(s)]

Determine how many years it will take for the Earth’s equilibrium temperature to decrease by 1°°C.

Assume the surface area of one side of the flat earth is A. Let the angle between the Sun and the flat Earth’s center axis be 6,
where 6 is initially 0°. As the Sun’s rays are parallel, the power delivered to the Earth by the Sun will be Si A cos 6 at any given
point in time.
At equilibrium this is the energy radiated via blackbody radiation, so the equilibrium temperature T satisfies

SeAcosf = o(24)T4,
where the factor 2 comes from the fact that flat Earth would radiate energy from both sides. This gives

Se cosé
T(e)):;‘/LQ(7 :

We wish to find the value 6 such that T(6) = T(0) — AT.

4 S@COSé a4 So _ AT
20 - 20 ’
4 A 4
_ 2 2 x 5.67 x 10—
cosf=(1-aT3/22) = [1—ar{/ZX222 X0 7} _ .98s0.
So 1366

Now we find the time it takes for the axis to make such an angle with the Sun. On the celestial sphere, let O be the center of
precession, Z be the current direction of the axis, and X be the direction of the axis when it makes an angle § with the sun, i.e.
£LZCX = 0. If e is the radius of precession, then LKOCZ = LOCX = e.
By the spherical law of cosines on angle O of spherical triangle OX Z, we have
cos § = Cos € COS € + sin e sin e cos(<(O)
= cos? ¢ + sin? e cos(<O)

cosf — cos2 e
el
<O = cos <2>
Sin” e

P 6 — cos?
Ar=T9  po Py cosmt (C080 cosTe
2 2r Sin” e
25800 _1 (0.9880 — cos? 23.50)
= —— X CO0S —_—
T sin” 23.5°

~ 1606 yr.

Therefore, the average temperature of the Earth will go down by 1°C in just over 1600 years.




II Condensed Matter Physics

II.1 Two-site Problem (5 points)

Consider a potential representing two inequivalent wells separated by a barrier. In the limit of infinitely high
barrier the two localized states have energies e; and ¢,. For a finite barrier a fermion can tunnel between the
states 1 and 2. Let the corresponding amplitude be 7. One can write down the Hamiltonian as

H= 510101 + sgcgcQ - T(c]i@ + c;cl).

II.1.1 [2 point(s)]

Diagonalize the Hamiltonian and find its spectrum.

Introduce two new parameters ¢ and A, such that
€1 =+ A, g0 = — A.
In terms of these parameters, the Hamiltonian becomes
H = 6(011‘01 + C;CQ) + A(cJ{cl = c;@) = T(CIC2 + cgcl).

cJ{ c1 + c;Q is a total particle number operator, which is conserved and can be substituted by corresponding particle number
(in our case by 1). This yields a constant number and only amounts to a uniform global shift of the energy scale - therefore we
can discard it. The residual part can be compactly written as

H=UtHU
where

H=Ac* — 10, U = (Cl>
c2

From H = Ac? — 70%, the spectrum is simply E = +¢, with € = /72 + AZ. Using the rotation matrix

g = cosd —sind
~ \sin® cos#@

such that cos 20 = A/e and sin 20 = 7 /¢, we get

H=cplo?¢p, ¢=8U= (Z;) .

I1.1.2 [3 point(s)]

Imagine that at ¢ = 0 the fermion was localized in the state 1. Calculate the probability to find the electron in
the same state at the moment ¢.

Hint
Consider the transition amplitude (0|c: (¢)c] (0)]0), where c1 (£) = e tc e~ Ht,
To calculate the probability of finding a fermion in the same site after time ¢, we use the transition amplitude and the Heisenberg
representation of operators.




(Oler (B)] (0)]0) = (0lex (£)el[0).
Now the following manipulations are made

; _ ; Ty _pt . . Ty, _pt
cl(t)cJ{ =etftcie ’Htc]i — giet(bib1 b2b2)(cos 0by + sin Obs)e iet(by b1 b2b2)ci.

Since [b{bl,bg] = [bgbg, b1] = 0, we have

c1 (t)CI — (COS eeietblbl blefietbibl 4 sin Qe*ietbgbZ bzeietb;bzt)ci .
Since by (t) = eiebibity, o—ieblbit the equation of motion %t(t) = i[H, by (t)] gives by (t) = eic?b;. Similarly ba(t) = e~%“tby. This
way, we have
c1 (t)c} = (cos fe'*h; + sin Ge_ietbg)cJ{.
Expressing b; and b2 back with ¢; and ¢z gives

c1(t)el = (cos Be’! (cos Oe; — sin Ocs) + sin e~ (sin fe1 + cos fea))el .
Taking the average (0]...|0), the terms that have ¢y will give zero after taking the average, since we create only one fermion at
site 1 with c{ and there is nothing to destroy with co. Thus we have

(0lc1 (£)cT |0y = cos? et + sin? ge et
The absolute value of this quantity gives the probability of finding a particle on site 1 at time ¢, when it was localized at the same
siteat¢ = 0.

2

VAT 2

P(t) = cos? et 4 cos?(20) sin? et = cos? et + sin? et

10




II.2 Quantum Ising Model and Majorana Fermions (13 points)

Quantum Ising model (Also known as 1D Ising model in a transverse magnetic field) is a toy model famous
for exhibiting quantum phase transition, i.e. transition not driven by temperature but instead driven by
external magnetic field. We consider 7' = 0 case. The Hamiltonian of the model is:

N N-1
H{{oc} =J <—>\ e a—;&;H) 1 (I1.1)
n=1 n=1

J > 0is the coupling constant of z — z interaction and A > 0is a dimensionless parameter, that characterizes
the amplitude of a transverse magnetic field h = JA. 62 and 67 are the Pauli matrices for spin-1, each defined
on a site physical site n of the chain. These Pauli matrices obey the known SU(2) algebra relations when
defined on the same site and commute when the site indices are different. Traditionally, we take Z to be a
diagonal matrix, with eigenvalues of +1 (spin up, | 1),) and —1 (spin down, | |).). We can also express spin
up/down in z direction in the z basisas: | 1), = | 1). +| ). and | |), = | 1). — | ).. As an example, the states
of this system expressed in the z basis can be written as

[ T1): @[ d2): @ . @[ 1) ®@ o = [ T1,d2, s 15 ) (11.2)

meaning that the first spin looks along z direction, the second in the opposite and etc. Similarly, for the x
basis we have

[T1)e ®[12)s ® . ® [ 1j)a ® ... = | T1,d2, 1), ) (.3

I1.2.1 [1 point(s)]

What is the global discrete symmetry of this problem? Express the unitary operator U in terms of Pauli
matrices, under which o . ) X
6% - Us2UY, sothat UH[{c}]U' = H[{c}].

The problem has a global Z, symmetry: Flipping the sign of all 6 matrices at each site n leaves the anti-commutation relations
intact and the Hamiltonian stays invariant. This is equivalent to a rotation of all the spins around the z-axis by an angle 7. Since
0%0?0® = —g? and all Pauli matrices commute if they are defined on a different sites n, the unitary operator U that corresponds
to spin-flip symmetry is the following string-operator

I1.2.2 [2 point(s)]

Argue what could be the ground state configurations of spins for A = 0 and A = +oo, expressed as Eq.(I1.2).
What would happen if we used Eq.(I1.3) instead? What are the possible values of the total spin along z di-
rection (i.e. magnetization, interpreted as the so-called order parameter of the problem) in these limits and

why should we expect a phase transition point at an intermediate value A = \.?

The model possesses a global discrete symmetry.

£z sz — 5z 5z
Unan+1 =0n ®Un-!—l

11



When A = 0, there is no transverse magnetic field in the Hamiltonian and all we are left with is H[{o}] = —J Efj:_ll 6767 ,,-In

the ground state, all of the spins are either looking up or down in z direction- thus we have a perfect order of spins in z direction.
The choice of all-up and all-down breaks the global Zs symmetry and the possible magnetization is either N or —N. When A —
+o0, the transverse part of the Hamiltonian is dominating over the z —  interaction and thus we have H[{o}] = —JA_, 62.
In the ground state for this regime, all of the spins are looking only along z direction. This means that the global Z> symmetry
is not broken. On the other hand, all spins looking up in z direction translates to totally disordered spin configuration along =
direction and thus there is no magnetization. The order at A = 0 and disorder at A — +oo limits, a consequence of breakdown
and recovery of Zs symmetry demands a phase transition in the intermediate regime of A = X..

I1.2.3 [3 point(s)]

To extract a precise value of )., we exploit a concept of self-duality. For convenience, let us denote links that
connect sitesnand n + 1asn + 1 and define two new matrices in the following way

firg1y2 = H 65, Hpy1/2 = 0n0m41- (11.4)
j=1

ji matrices satisfy exactly the same algebra as 6. Eq.(I1.4) is known as the duality transformation. The action
of fi7, ., » On spin configuration is, for instance

/.AL,Z+1/2| T17T27 "'7Tn—1aTn7 "'7TN>Z = | J/17~L27 "‘7~Ln7Tn+1 "-7TN>Z7 (115)

meaning that 47 /2 Operator creates a domain wall in the spin configuration and thus disordering the sys-
tem, hence the name - disorder operator. Invert the transformation Eq.(I1.4), by expressing & operators in
terms of /i operators and rewrite Eq.(I1.1) Hamiltonian in terms of /i operators, denoting it as H[{u}]. Let us
forget for a second that initially we were working in the spin-up/down basis of 6 matrices and assume that
H[{x}]is the starting Hamiltonian, therefore we work in spin-up/down basis of /i* instead. What are the pos-
sible values of the total disorder parameter in A — +oo and A = 0 limits of H[{x}] Hamiltonian? How does it
compare with the same regimes for H[{¢}]? Extract the value of A when the Hamiltonian maps to itself under
the duality transformation, corresponding to the critical value ).. The Lee-Yang theorem justifies that there
is only a single critical point in the model. Draw a phase diagram of H[{c}] quantum Ising model, indicating
the region of order and disorder.

n—1 n n—1 n—1
~Z ~Z _ ~T AT __ AT ~T _ ~Z Az _ Az
Hp—1/2Hn41/2 = H oj H j = On» ]___[ Hnt1/2 = ]___[ 050541 = Tn-
Jj=1 j=1 j=0 j=0

The Hamiltonian written in terms of 4 matrices will be

N

N-1
H{u} =J (‘AZﬂi—l/zﬂfpr - Z /‘224—1/2) :
j=1 Jj=1

In the A = +o0 case, the value of the total disorder parameter is non-zero (can be N or —N) and in A = 0 case the total disorder
is zero. Comparing these regimes for H[{c}] and H[{x}], we see that for A = 0 the order parameter is nonzero and the disorder
parameter is zero, while for A\ = +oo the order parameter is zero and the disorder parameter is nonzero. The Hamiltonian is
self-dual when A = 1, thus A = 1. For A < 1 the system is ordered and for A > 1 the system is disordered.

I1.2.4 [3 point(s)]

The Jordan-Wigner transformation maps bosonic spin-1/2 operators onto the fermionic creation and an-
nihilation operators in a very non-local fashion. Under the Jordan-Wigner transformation Eq.(I1.1) exactly

12



maps onto the model of a 1-dimensional p-wave superconductor (1DPS)

H[{o}] = Hipps = —\J Z 2ta, — 1) —J Z (@han 1 +ab 1+ @hal g + nsadn) (IL.6)
where ), and a,, are the creation and annihilation operators of spinless fermions at site n. These operators
obey standard anti-commutation relations

{dlw dm} = Onm, {dna dm} =0. (I1.7)

The last two terms correspond to the superconducting couphng creatlng and destroying two particles at a
time. Due to this, the total particle number operator Q = Z I &, does not commute with Hipps and the
total particle number conservation is violated. However, the parlty of the particle number is conserved - we
either have odd or even number of particles in the system. The corresponding parity operator is

P = imQ, (I1.8)

Hipps model has a notorious feature in it’s single-particle energy spectrum:

15 ) 15 B
10= 10
0.5 0.5 =

w 0f w 0

=05 = -0.5 |=

-10= -10 =

-15 -1.5

For A > ). (Same ), as it was in the Quantum Ising model) the spectrum of the Hippg is depicted on (A).
However, as soon as A < ). condition is satisfied, depicted on (B), a mysterious energy level emerges - with
energy exactly equal to zero! This corresponds to the so-called Majorana edge zero mode - a topologically
protected mode, located at the left and right edges of the system. To get the essence of Majorana fermion,
a simple analogy comes in handy: A complex number z can be split up as its real « and imaginary b parts,
yielding z = a + ¢b. In a similar way, a creation and annihilation operator of a fermion can be represented as
its "real” and "complex” parts as

aj = % (Cy - “7;) , = % (C} +iﬁj) ; (I1.9)

where {; and 7; are the two Majorana fields. Derive the anti-commutation relations that the Majorana fields
obey. Rewrite the Hamiltonian Eq.(II.6) and the Parity operator Eq.(I1.8) in terms of the Majorana fields.

13



First we invert Eq.(IL.9) and express 7}; and ¢; in terms of &; and a;:
G=a;+al, Ay =i(@j —@})
The fermionic anti-commutation relations give
(&5, 850} = {njongy =285, {&,n ) =0. (11.10)
The Hamiltonian Eq.(I1.6) in terms of Majorana fields is

N N-1
Hipps = iAJ Y & +iJ > 74
j=1 j=1

and for the parity operator we have
N

P= H(—ifjﬁj)

Jj=1

I1.2.5 [4 point(s)]

Generally, Majorana zero mode W is an operator with the following properties:
[H, 9] =0, {P,¥}=0, UI¥|ly =1 (I1.11)

For a zero mode to be also an edge mode, it must be localized at the boundaries of the system. Let us de-
note such right and left edge zero mode operator as U and U;. The matrix elements of ¥ g, Mmust decay
exponentially as we move [ distance away from the corresponding boundary. If A = 0, then ¢; and #/ do not
appear in the Hamiltonian at all, they are completely isolated from the rest of the system. They also anti-
commute with the parity operator and satisfy the normalization condition. Since both of them are localized
at the left and right edges of the chain, they are an exact edge zero-mode operators

UpA=0)=(,  Ur(A=0) =in. (11.12)

The 1DPS is in a topologically non-trivial state when |\| < )., therefore we need to check if the edge zero-
mode operators persist as we deviate from A = 0 point and see how does it get modified. For concreteness,
let us concentrate on the left edge mode operator ¥, only. Develop an iterative method to write down the
expression for U7 ()\), n indicating that Eq.(I1.12) has been corrected upto n order in \. After the last possible
step of the iteration, under what condition can we take [I:Imps, \ilf ~1] = 0? What about U »? What happens to
both modes when |A| > A.?

Iteration method - Suppose we have two operators A = B + ¢ and Z, such that [B, Z] = 0, but [, Z] = D. Find Z', such that
[B,Z'] = —D and add it to the initial Z. Repeat.

The Hamiltonian is naturally split into two parts Hipps = B + C'

N N N-1 N
B=ix1Y Gy, C=id Y il
j=1 j=1

[C, 1] = 01s always valid, since ¢; operator is completely absent from C. This way

[Hipps, (1] = [B, 1] = —2iAJ 1.

14



Introduce a new operator 6(1), such that [, 6())] = 2iAJ#;. Such operator is 6() = Alo. At this level we have ¥ = ¢, + Aéo.
Transfer j = 1 term from C to B and define

N N—-1
BW =g Y Gy +idméa, €M =id > il
j=1 j=2

Now [fIles,\i/g)] = [B(D,\il(Ll)] = —2iX2J7,. The operator 6(2) that gives [C,56(2)] = 2iA2J7, is 6(2) = A2(3. Doing this
iteration N — 1 times gives the exact solution for arbitrary A

‘i’(LNil)(A) =G+ M2+ A2+ + AV Ty

Similarly

\T’%Nfl)(/\) = AN + Mn_1+ A in_2 + .+ AV
When |)| < 1, further we are from the boundary, the smaller is the corresponding contribution, meaning that the modes are
localized at the edges of the system. [H1ppg, \i/(LN _1)] ~ AN thus for |\| < 1 taking a thermodynamic limit heals everything. If
[A| > 1, then non of Eq.(II.11) are satisfied.

15




I1.3 AKLT Model (12 points)

We consider the following Hamiltonian
N N N N 2
Hager = J Y Si-Sipn + K (Si : Si-i—l) ;

where S; = (57,57, 57) is the vector spin-1 operator at site i.
Each site has local Hilbert space with three states: |[-1),0), |+1).
I1.3.1 [2 point(s)]

Consider an operator A with discrete eigenvalues a,,. Define P("™) as
P =c I (A-an),
n#m

where C is a normalization constant. Show that P("™ acts as a projection operator and determine the nor-
malization constant C.

Projector satisfies

5 (m) _Jo forn # m,
P 1n) {|1[1n) forn = m.

PO iprn) = [tpm)

¢ I1 (A-an) lom) = [¥m)
n#m

c ]___[ (am — an) WM) = |7f’7n>
n#m

= 1

Hn;&m (a’m - a’")

I1.3.2 [2 point(s)]

Consider two neighbouring sites 7 and 7 + 1. What are the possible eigenvalues of the total spin operator
o N N 2
St = (Si + Si+1) ?

How does one combine two spin-1 degrees of freedom?
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191=201¢0
52, =6,2,0.

(In general, J? = j(G+1))

I1.3.3 [2 point(s)]

Using the results of the first two sub-problems construct a projection operator Pffﬂrl that projects onto the
total spin-2 subspace of the combined spin-1 degrees of freedom at sites ¢ and ¢ + 1. Express it in terms of
S;and S;,1. What is the relationship between this projector and the AKLT Hamiltonian? What is the ground
state energy of the AKLT model?

($)2 = 2 for spin 1.

Using C = ﬁ = 1/24, we obtain

For K = ¢ and J =

N|=

I1.3.4 [2 point(s)]

Consider two sites i and ¢ + 1 and split the spin-1 degrees of freedom into two spin-1/2 degrees of freedom.
The two sites combined will now have 4 spin-1/2 degrees of freedom. How can we combine these 4 degrees
of freedom in order to minimize the AKLT Hamiltonian for this pair of sites? Write down the associated

ground state wavefunction |¥y), ,, , using spin-1/2 states, |a, 8), |7, ), ,, where a, 3,7, ¢ take the values 1, |.

Hint

For instance, state |1, 1), |1, T>i+1 would mean all four spin-1/2 projections are spin-up, i.e. $* = +1/2.

Since %®4 =2®1%% 092 and Pﬁll projects to 2, spin-1/2 must be combined to give at most spin 1.




lee 1), 14 5>z‘+1 —lad); It ,3>i+1 )

|‘I’0)i,i+1 = V2
Whatever «, 8 may be, this state will have at most spin 1, since
[T — 1)
V2
is spin singlet state.
spin 1

spin 1/2 , .
singlet pairing

I1.3.5 [2 point(s)]

Construct an operator 7} that converts from the spin-1/2 triplet basis to the spin-1 basis, e.g. T} |1, 1) =+,

One can write such operator in the form 7; = 7 5 lo); (o, B];, where o, 8 =1, and o = —1,0, 1.

LetT = 7, glo) (o, Bl.

+ _ —
th =1t

:1,
1

9 =0, = —.

LS ()

The rest are all 0.

I1.3.6 [2 point(s)]

Combining the results of I1.3.4 and I1.3.5 write down the ground state wavefunction of the AKLT model. State
the difference between periodic and open boundary conditions. What is unusual about the edges in the case
of open boundary conditions?

1 /
TiTiv1|1%0)s 41 = ﬁtiﬂtzw o) lo’) (¢eBle’” 1) (@B’ L B”) — (aBla” 1) (' B'| 1 B”))

1 ’ ’
= 5 |0’> |0'/> (tg”TtZﬁ” - tgllitgﬂ//) .

18



Periodic boundary conditions:

Open boundary conditions:

For open boundary conditions we see spin-1/2 states on the edges.
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III Particle Physics

III.1 Born Approximation (10 points)
II1.1.1 [1 point(s)]

For a particle with mass m, the first Born approximation is defined as

FOK k) = —%Zh—"; / & KXY (x),
7

where V' (x) is the scattering potential. Show, that for a spherically symmetric potential this simplifies to

2m1 [ .
f(l)(k/,k) = —i;—/ rdr sin(gr)V (r).
h”qJo
The scattering is elastic.

We consider elastic scattering, when the energy is conserved and |k| = |k’| = k, so we define |k — k'| = ¢ = 2k sin(6/2). In the
case of the spherically symmetric potential, this simplifies to
12 g / ’
SO = -2 /d¢ d(cos(8)) r2dr kK Ircos(®)y ()
7
- _iL";% / d(cos(8)) r2dr ¢!k Ircos(@)y/ (.
4T h
1 2m [ eilk—K'|rcos(6”) ™
=—_—_""9 2dr | —— %
i 72 ”/’" " kK )
1 2m [eilk—K'|r _ —i|k—K'|r
=——=—=2 2d 1%
in 12 ”/r " ik —K|r )
[oigr _ ,—iqr
= —i2—732ﬂ'/r2dr S - © :| V(r)
4m h L iqr
= 7i2—n;2ﬂ/r2dT 2sin(gr) Sln(qr):| V(r)
4w h L gqr
1 2m4m .
= TR /rdr sin(qr)V (r)
= 72—731/ rdr sin(qr)V(r)
h* qJo

II1.1.2 [2 point(s)]

A particle of mass m is scattered in the Yukawa potential:

Vi(r) = ?e"".

Using the result above calculate the differential cross-section in the first Born approximation.
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Plugging in our potential,
FOE k) = —zhL;L ! / rdr sin(qr)V (r)
qJo

—RT

2m Vo [ .
= h_ﬂ;_o/ rdr Sln(qr)e
q

2 oo
= mVO/ dr sin(qr)e=""
= 2_m@1 |:/ dr €' ’":|
q

oo oo
/ dr 'Te™ R = / dr e(ia—r)T
0 0
[e(iq—n)r] °°
iq— K .

1
iq— K

K+ 1iq
n2+q2

So,

FOM k) = Qh—’;‘%lm [
2m Vo _q
TR g K2+ 2
2m Vo
B2 K2 12 q>
_ 2m Vo
T B2 k2 +4k2sin?(0/2)

/@—i-ilI]
n2+q2

Cross-section is just the amplitude squared:

do (D
o =l o =

4m? VO2
h* (k2 + 4k2 sin%(0/2))2

I11.1.3 [1 point(s)]

For what values of x and V; is the Born approximation reasonable at low energies?

To check the validity of our approximation, we note that for large » the wavefunction is modulated as

1 2m 3 etklx=x'1y/(x")

() = (xll) - == —

([ +))
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The second part of the equation must approach zero in the scattering region (i.e. |x| = 0).

1 2m 3 eiklx=x'1y/(x")

— x'|k 1
4 B2 * |x — x/| k) <
1 2m 5, eik\x'lv(x/) kX’ -
41 B2 |x/| (2m)3/2
1 2 ik:m'v 1\ pika’ cos @

m [ 3. (z') e il

ar B2 ! (2m)3/2
1 2m ek=' V(z') sin(ka’)
—amy N2 g’

4m 2 Tr/(m) * i (2m)3/2ka!
2m W N etha’ e=ra’ gin(ka')
T2 (2m)o2 /(x) da! ——— P

2m ) iks  —rg SID(kT")
ﬁwf dot e e =

<1

<1

<1

In the approximation of small k,

sin(kz’)
k'

gt
ezkz =il =

So, we're left with

2m Vo e
‘h2 (27r)3/2 /dz e

2m Vo 1
B2 (27m)3/2 Kk
‘Qm Vo

EN) &1
h2n<<

where we have removed the insignificant factor (27)3/2.

II1.1.4 [1 point(s)]

In the limit x — 0 Yukawa potential transforms into Coulomb interaction. Show that the cross-section (or
rather, the first Born approximation) describes Rutherford scattering in this limit.

We set s = 0and Vy = ZZ’e?, so one obtains
do W 4m? 173
dQ Bt (k2 + 4k2sin?(0/2))2
am? (22'€?)°
T Rr* (4k2sin(6/2))2
_ 4m? (ZZ’62)2
~ Rt 16k*sin?(6/2)

II1.1.5 [2 point(s)]
The second Born amplitude is defined as

1 2m
(2) (1 __am 3 /
9K, k) y— (2m) <k

1
—V]|k).
VE—HQ+i€ ‘ >
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Show that the forward scattering amplitude for the Yukawa potential is given by

(2) — _4n 2m 2V_027T - K dl
Folel) =—4 <h2> (27T)34/0 (k2 — k2 4 ie) (k2 + (k — k)?) (2 + (k + k)?)

The forward scattering condition just sets k' = k. So,

) _Lg, s/l 1
R

1 2m ~ 1 S =
=——4723/ﬁk——ff———7kaka
am 72 20 E h2k2/27n—+'s< Vik) (klviko
1 2
= () e [ Vi 2

We have used the hermitian property of V operator. Next, we calculate the matrix product:

K|V |k) = / &z (K|V[x) <x|f«>

_%/ﬁ

e~ hT ¢ i(k—k)-x
=V [ dz—
0 / r(2m)3

) (x/k)

e~ KT i|]~(—k\7‘ cos 6
(2m)?

=471'V0/7'2dre_ s1n(|ki k|r)
v (2m)3 |k — K|r

= 27TV()/d(COS 0)r2dr

= 477% /dre_'w sin(gr)

g tm | [~ dreta= |

Vo 1
=dr —
G 72+
Vo 1

=4dm

(27)3 k2 + k2 + k2 + 2kk cos(6)

Plugging this back to f(2) we have

1 /2m)\? - 1 -
Ak =—— (=) (2 3/d3k~7 k|V k) |2
5 1 ) 47r(h2)<”) k2_k2+ie|<| B
2 2
1 [/2m a [ 2E Vo 1
— (=) @n) d°k = = —
C4r \ R —k2 + e (27r)3 K2 + k2 + k2 4 2kk cos(0)
2 2
_4W(Lm) ! !
R 27r)3 k2 — k2 +ie \ w2 + k2 + k2 + 2kk cos(h)
2m\ 2 1 1 2
(447) 2ﬂl/11C050 Yk2dk - = = -
h k2 — k2 +ie \ k2 + k2 + k2 + 2kk cos(0)

We can already integrate the cosine:

2
/1d(cos§)< B ~> :L{ L == L J
—il K2 + k2 + k2 + 2kk cos(6) 2kk | k2 + k2 + k2 — 2kk k2 + k2 + k2 + 2kk
1 1
T (k—k)2 K2+ (k+k)2
2
(w2 + (k= k)2) (k2 + (k + k)2)

1
2kk
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So, our equation now is:

@ C 2ﬂ 2 ‘/02 . oo I::Zd];
rowi = (32) ot [ e m w6 e e

II1.1.6 [2 point(s)]

Identify all the poles of the integrand in the above result and integrate it over all  to obtain

2m )\ 2 V2
(2) _ (T 0
£k k) = ( h? ) 262 (K — 2ik)’

© o 2m 2 y2 _ oo W24k

rO = i (73 2" ), (K2 =R + iR + (b= B)2) (<2 + (h + %)
_ (27’"1)2 V'OQ 4i [e’s) %Qdi;]
T\ R) @0 2 oo (B2 —R2 4 ie)(R2 + (k — B)2)(R2 + (k + R)2)

We have symmetrically doubled the limits of the integral in the last step. We can do this, since the integrand is an even function
of the integration variable. The function has six poles in the complex plane:

.
]
. F .

Corresponding points are:

ar =k + ik

as =k — ik

az = —k + ik

oy = —k — ik

as = vVk? +ie

ag = —Vk? + ie

Only half of these zeros (namely, a1, a3, as) are on the upper part of the plane. We can integrate on the upper half-circle, having
a guarantee that the circular part gives zero after R — oo, because the integrand goes as 1/k% and becomes zero at very far
distances.

So, using the residue theorem,

2 y2 og4n
2 ) Vo 4 [2im (Res (f, a1) + Res (f, ) + Res (f, as))]

1® (k) = —4n (ﬁ (2m)?* 2
SN E——

_(2m ? Ve
T\ A2/ 2k2(k — 2ik)
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II1.1.7 [1 point(s)]

The optical theorem relates the full cross-section to the imaginary part of the forward scattering amplitude.
State the optical theorem and check that it holds for the Yukawa potential (the first terms in powers of 1j).
Why is the second Born approximation needed for this?

The optical theorem states:

k
Im [f(k, k)] = 1 tet
k do

= — [ dQ—
47 dQ)

k ’ 2
_ E/dﬂ|f(k,k)|

The first born amplitude contains Vj linearly, the second one contains it squared and so on. If we need to check term by term,
we need to compare the imaginary part of the second amplitude to the total cross section calculated using the first one. In other
words,

m 1) K)] = %/dﬂ)f(l)(k’,k)r
k 4m? V2
T ar /CM) d(cos 0)? (K2 + 2k2 —gk2 cos(6))?
k 7T4m2 Vg
T 4r Bt K2(k2 4 4K2)
4m2 ‘/02
Rt K2(k2 + 4K2)

Comparing this to the f(2) above, we see that the optical theorem is satisfied.
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III.2 The Higgs Mechanism (10 points)

Consider the following Lagrangian:

L= (D"®)'D,® — 120Td — \(®Td)?

where

=7 (g; j: zii) isan SU(2) doublet;

« D, =0, +ig W is the covariant derivative;
+ 7% denote the Pauli matrices (see the Appendix below), a = 1,2, 3;
« W are vector bosons;

+ gisacoupling constant.

I11.2.1 [1 point(s)]

Under the local SU(2) transformations

b o' @F g,

the vector fields transform as

a a 1 a aoc C
Wi — Wi — Eaua (z) — € Oéb(ZL‘)WH.

€ ig the totally-antisymmetric symbol with €23 = 1.

Show that a mass term for the vector bosons breaks the gauge invariance of the Lagrangian.

Let’s consider a mass-term for W fields:

M,
Cany = =22 W (W)

The transformation will be:

M, 1 1 6B ]
Lany = == (W;j - ~8ua%(z) — eamnam(x)wg) ((Wb)“ - ~94ab(z) - eb”a’(at)(Wj)”)
9 9
M, M, 1 1 Py
=— zabwg(wb)u + 2“” (W;};@“ab + Eaua“(Wb)“ + Wit al (Wi + e“m"amwg(wb)ﬂ)
Map

M, M, o
Wﬁ(Wb)“ 4 22D B”a(“Wﬁ) 4 20 W‘E“e”)”oﬂ(wﬂ)”

2 29 2

where (a, b) denote the symmetrization in indices a, b. We note, that the additional term has a structure M,;S*?, where S is

symmetric. The only way that this expression is identically zero, is when M, is anti-symmetric. But mass matrices are defined

to be symmetric and positive definite. So, an anti-symmetric M,;, won’t do.
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I11.2.2 [1 point(s)]

We assume A > 0, so that the potential
V = 20T + \(@TD)?
is bounded from below.

Which case describes a theory with spontaneous symmetry breaking: ;2 > 0 or 2 < 0?

For the case that @ is a complex number (or a real two-component matrix), the plots are:

A>0, u2<0

A>0, p2>0

where horizontal axes are either ®* and ®, or ®; and ®,.
It’s clear that 42 > 0 case does not break the symmetry, but 2 < 0 case does.

I11.2.3 [1 point(s)]

What conditions must the fields ®, ®' satisfy in order to minimize V'?

First of all, notice, that all components of ® enter in the expression of V only as a product ®®. So, any condition will be
ultimately imposed on &1 ®.

v(ote) = p2ote + A(@fe)?
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The condition of the minimum is

oV B
@ty
p?+228td =0

2
dTdp = K
2
o _ 1 (1 +ige
By definition, ® = 7 (¢3 + i
2
S0, 1 + 63+ 5 + 9] = =’

II1.2.4 [1 point(s)]

For the ground state we choose

o= (1)

In other words, we set ¢; = ¢2 = ¢3 = 0 and ¢, = v = const. Why are we allowed to do this? What is the value
for the constant v?

The result of the previous part gives that the fields ¢; satisfy the following constraint:

2
OF + 03+ 83+ 0] = = =02

i.e. they are located on a 3-sphere. We can choose any point for this 3-sphere as a ground state and expand the general fields
around it.
The constant v = 4/—p2 /. Note, that since u? < 0, v is real.

II1.2.5 [1 point(s)]

We expand the fields around @:

o—mrae= (0)+ (R0 TS - (20l AR,

Show that this is equivalent to the infinitesimal transformation

o 1 etw 0
o \/56 v+ h(z))’
How are the fields A¢y, Aga, Aps, Ag, given in terms of 61, 05, 03, h?
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We consider infinitesimal fields, so
.09 (x a a
e’gT()T ~ (1 + iL (@) Ta)
v
- 1+4463/v i(01 — 162) /v
— \i(01 +102) /v 1—1403/v

Now,

Lei%-,-a 0 - i 1+i93/’l) i(91 —i62) /v 0
V2 v+h) " 2 \i(61 +i02)/v 1—if3/v v+h
_ i 0o + 1601 +(02 +i91)h/v
_\/ﬁ v+h—i93—i6’3h/v
Small fields means that products 6;(x)h(z) are also infinitesimally small, so finally,
P~ i 02(z) + 01 ()
V2 \v + h(z) — i03(x)
This is equivalent to the perturbation given above, with

Agi(z) = 02(z), Ada(z) =01(z), Ads(z) =h(z), Ada(z)=—05(z).

I11.2.6 [1 point(s)]

Consider the kinetic part of the Lagrangian:

Lyin = (D'@)"(D, )

Show that inserting

into Ly, gives

_1 (0"h) (0,h) + % (0"61) (0u61) + % (0"02) (0u02) + % (0"63) (0,.03)

e}
-
oy
S

|
[\

/1 (h@"@l + vo*01 — 010" h + 030105 — 928“93)
3 (h@"@g + 08“92 - 928‘% + 916”93 - 938“91)
i

h@"@g + 06#93 — 938Mh + 928”91 — 918“92)

+ o+ o+
N NiQie
=

)+ (W2)" + (W2)?) (o2 + 20k + 1® + 63 + 63 + 63)

_|_
®|9,
N

—
=
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To calculate this, we're going to need

@ 1
= (au +z‘glw;:)

7

92(1 =+ 7,91 )

D (v—l—h(w —z03 z)

_ L [(9ub2(z) + i0ub1(x) ) + 601 (x)

V2 [( h(z) — 15#‘93(9‘)) ) ( m) —i03(z )]

= 5 | (et o) + 2 (e ") ()]

_ 1 [ (0u02() + 0,01 (z) Q W3 01 (z) + 02(x)) + ( ; — Wz)(v + h(z) + i03(x))
N [(Buh(m) — 10,,03(x) ) 2 ((W1 + sz ) (@61 (z) + O2(z)) — W3(v + h(z) + 103(90)))]

A bit too overwhelming... Let’s denote

1
V2

(™

v+ h(z) —i03(z) ) ~ /3 \ P2
6 [oF] W3<I)1 + (Wl — ZW2)(I>2
9, Ps + (W +iW2)1 — W3,
((m + %ij)@l + (Wl - 1W3)<I>2>

25} (z) + 101 (CL’)

So,
1

7

1

V2

D,® =

)

redefine:

1

(Bu—I—zw )<I>1+(w + dw! 1) P2

(O — EW P + L (W] +iW2) D1
((8u — jw )<1>2 + (—w + qwl )‘I>1)

((9;492 — w301) +1 (6#91 =+ w 92)
= (w (v+h)+w 93)+1(w v+h)7w203)
(8Mh w 93) — i (0ub3 + w”(v + h))

gwe=up V2
Now,
(8# + zwﬁ) (02(z) + 01 (z
(wi + 'Lwllt) (v+ h(z
(0 — zwﬁ) (v + h(z

— 03

— i3

)
)
)
)

(—wi 4 zwt) (02(z) + 61 (z ( ;2492 -+ 11)“01) +1 (w#GQ — 301)
So, we can rewrite
Dw=é@ﬁ§)

where

&1 = 0ub2 — w01 +wl(v+h) + w03

& = b1 + w02 + w), (v + h) — w03

&3 = Ouh — w03 — w02 — w61

€4 = —0u03 — wi (v +h) + w62 — w61
And finally, (D*®)" (D, ®) = (¢2 + €2 + €2 + £2)/2, s0,

Lrin = 5 (0%1) (9uh) + 3 (9"01) (9,02) + 3 (9"02) (9,02) + 5 (0%05) (9,00)

w,, (hO"01 + v 01 — 010 h + 030" 02 — 020"03)
+ ’wi (h8”02 + voH 0y — 020" h + 010703 — 938”91)

w? (ho"03 4 vOH 03 — 030" h + 62001 — 610" 02)
1
+ 5 ((wh)® + W2)? + (w})?) (v +20h + h? + 6 + 63 + 63)
In terms of W :
(B“h) (Ouh) + = (aﬂel) (Oubr) + (0%03) (9u03)

1
Ligin = (‘9“92) (Opb2) + >

%W; (hd"0y + v8”01 — 0,0"h + 936“92 — 020"03)

+
+ %WEL (h@”ez +vO* 0y — 620" h + 610+ 03 — 938‘“91)
+ QWS (h&"05 + v 05 — 30 h + 020101 — 010462)

% ((Wl) + (W22 + (Wd) )(u2+2uh+h2+9%+9§+9§)
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II1.2.7 [1 point(s)]

Consider the potential part of the Lagrangian:

V = 12010 4 A\(@T0)? = —\?®TD 4 \(DTD)?

Show that inserting

into V gives

V:

e

(' + 4RPv — v* + 4hv(07 + 05 + 03) + (07 + 05 + 03)% + 4h>v* + 2h*(0F + 05 + 63)) .

The product ®1® is simply

_ h?+2hv+ v+ 07 +02+62
2

ofe

2
V(q>Tq>):,\G (h2+2hu+v2+9'f+9§+e§)2—%(h2+2hv+v2+9%+03+9§))

It's easy to see that because of the minus sign, all #2 terms will cancel. Of course, % term will also cancel, but there is more: we
have a mixed 2hv term, which, after squaring, will become a term proportional to 2 and thus, h field will gain mass. Finally,

A
v(ote) = 1 (" 4+ 4h3v — vt + 4hv(0F + 0% + 03) + (07 + 03 + 03)% + 4h?v? + 2h2(0F + 63 + 63))

I11.2.8 [1 point(s)]

Examine the whole resulting Lagrangian. How does the number of degrees of freedom compare to that of
the initial Lagrangian? What is the reason for this and how can it be resolved?

The whole Lagrangian can be written as
L= 5 (0"h) @uh) + 5 (9"01) (001) + 5 (9102) (9u6) + 5 (065) (2,63)
+ gwg (hdM0y + vO ) — 010" h + 03905 — 0,0103)
+ gwg (hd" 02 + v 0y — 020 h + 019405 — 039"07)

+ SV (h0"05 + 005 — 030" h + 62001 — 010" 62)

g> 1\2 2)2 3)2 2 2 2 2 2
+ £ (W) + (W) + (W) (v2 +20h + b2 + 63 + 63 + 63)

>

— Zh* — k3 — 2?h? 4+ 51)4
4 4
h2 2 2 2
=2 hv—i—? (02 + 02 + 62)
A 2 2 2\2
—2(91 + 05 + 63)

At this point, Lagrangian seems to have more degrees of freedom than we started with: Gauge bosons W< have now each
gained an extra polarization (massless vector bosons only have 2 polarizations, but massive ones have 3). So, we have 3 more
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(unphysical) degrees of freedom. The resolution lies within the SU(2) gauge freedom of ®. In the next parts we will transform
® in such a way that the fields 6; 2 3 vanish.

I11.2.9 [1 point(s)]

Use gauge freedom to eliminate the 6 fields completely from the Lagrangian.

We have our main field ® written as

1 ,0%@) a 0
d=_"—¢"> T
V2 (v + h(z))
We also know, that ® has an SU(2) gauge freedom, i.e. transformations

a®

e )
leave the Lagrangian invariant. If we use this transformation:
ca® a1 0%=) a 0
1T _ 7 T
d — e’ 2 \/56 (v+h(z))

and choose a® = —20% /v (remember, gauge transformations are local, so a® is a function of z, just like %), that would transform
® into

®= % (v +(;z(x))

Consequently, we will have no 6 fields in the Lagrangian.

I11.2.10 [1 point(s)]

What are the masses of the vector bosons after the elimination of the 6 fields? How many degrees of freedom

does the resulting Lagrangian have?

Eliminating the 0 fields, we’re left with
1
L£=(0"h) (9uh) - %h‘l — Avh® — M?h? + 204
2
) 2 2 2
= (WD + W2+ (W3)?) (v + 20h + 1)
Here we can already see mass terms for gauge bosons W2:

2,,2 2,,2 2,,2
g%v 2, g% 2 g% 2
Lty :T(Wﬁ) +T(W3) +T(W3)

with My = gv/2.
As for the scalar field,
Lo, = = 2h?

with mp =V 2Av.
As for the degrees of freedom, since three scalar fields 6 disappeared, the three additional degrees of freedom are no more
present (degrees of freedom for the scalar fields have been "transferred” to the longitudinal polarizations of W gauge bosons).

Appendix

Pauli matrices:
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II1.3 Electron-Positron to Pions (10 points)

Part 1: Kinematics

s

pz/v, .
4 N
.7 \\
A
q2 v,
m

ma

For a 2 — 2 process of spinless particles with initial momenta p;, p; and final momenta ¢, ¢», the amplitude
can depend only on the scalar products:

Pi p%v Q%7 qga P1-P2, P1-4q1, P1-92, P2-41, P2 42, 41 - 42-

I11.3.1 [1 point(s)]

Give arguments why only 2 of these 10 scalars are independent. Where do the constraints come from?

The first 4 are constrained by the mass-shell conditions:
pl = mf, q; —mf, 1 =1,2.
Energy-momentum conservation gives 4 additional constraints:
Py +ph=d'+d, n=0,1,23.

This fixes 8 out of 10 variables and therefore leaves 2 of them independent.
Alternatively, one can define three scalar quantities called the Mandelstam variables:

s=(p1+p2)? = (a1 +q2)%,
t=(p1—q)® = (p2 — q2)%
u=(p1 —q2)° = (p2 — q1)°.
As discussed above, only two of these variables can be linearly independent. In fact, it can be shown that s, ¢t and « satisfy

s+t+u=m%+m§+m’12+m'22.

I11.3.2 [1 point(s)]
The n-particle phase space is defined as

d®, = 5% Zpi - qu H QdeqQJEﬁ
i J

J:1

The differential cross section for a 2 — 2 process is

27r)* ¢ 2
. (2m)* [{q1, @2|t|p1, p2)] dD,

do. /
m1m2%m1m2 P}

4/ (p1 - p2)? — mimj
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Show that the full cross section is then

1 A(s, my ,m2) / |tfz| a0z

Omimo—m/ml, =
12 6471'2 )\(57m17m2) S S

where S is the symmetry factor and ) is the K&llén function, defined as
A(s,mf,m3) = (s — (m1 +m2)?) (s — (m1 —m2)?).

ty; is the invariant amplitude of the process (the indices i and f stand for initial and final states, respectfully).

The differential cross section for a 2 — 2 process is

_ (2m)* (g1, @2tlp1, p2) |

44/(p1 - p2)? — mim3

do, d®o,

mima —>m’1m’2

where initial and final states are denoted by |p1, p2) and |¢1, g2), and m1 » are the masses of the particles in the initial state. Of
course, they need not to be the same in the final state. We will denote final state masses with m} ,. Using the definition of d®»,
we get for a two-body phase space

2
Uy P1TP2—4q1—Qq2) [Ufi q1 q2
s s, = | il @
— b=
mima—rmimy 4\/m S (2m)32Ez (2m)32Eg,
CM Frame 1 / (\[ E” _qu)‘s(g)(‘h +q2 |tf1| dS‘Il d3‘]2
1672 4 /(pl ‘p2)2 _m%m% S Eq~1 Elfz
iy 05~ s ~ By |t
1672 (@) —m%m% S FE ™, & E'm/) @
B, gy =Bm,~1=Em,g _ 1 o(v/s—E,, 1 a—Em/ q.) |tfi|2 d3q
©16m2S

44/ (p1 - p2)? — m3m?2 By qBmy.q
_ / o mi+ @ —\[mEt @) iy iy
1672

44/ (p1 - p2)? — mim3 S ymi+@ymi+P

1/ As,mE,mE) 1 5
~ 1672S 2s / 2 2,2 / |tfi| g,
44/(p1 - p2)? — mim3
In the CM frame, where p; = —p2 = p, the Kéllén function gives the solution of

Vs =Vmi+52+/ma + 52,
22 _ A(s,m2,m32) _ (s = (m1 +m2)?) (s — (m1 — m2)?)
P 4s 4s ’

=

The flux factor in the denominator is given by

44/ (p1 - p2)? — m3Im3 = 4/s5/p] = 24/ A(s, m3, m3).
VA Sm17mz)1/|tf1 a9

)\(s m2,m

Therefore,

Um1m2—>m’1m2 6471'2

Part2: ete” — nta™

We consider the process eTe™ — 77—, described by the following diagram:
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+
et ™

P1 g L7
‘.

() m

p2 q2 N

(& T

We define the Mandelstam variables as follows:

s=(p1 +p2)2 =(q + Q2)2,
t=(p1—q)? = (p2 — @)%
U= (pl - (J2)2 = (p2 - Q1)2~

Apart from that, let us define

k=p+p2=q +q,
l=p1 —po, l/=Q1—Q2-

I11.3.3 [1 point(s)]

Give the expression for the leptonic current L* (left side of the diagram above) using the Feynman rules for
QED.

The leptonic current is
L = 9°(p1)(—iev*)u” (p2)

I11.3.4 [1 point(s)]

The hadronic current H* (right side of the diagram above) can be written as

H" = (g1 + q2)"Gv (s) + (1 — ¢2)" Fv (s).

Argue, why Gy (s) can be safely neglected here.

The leptonic current is transverse to p; +p2 = k = q1 +q2. Consequently, the part of the hadronic current which is proportional
to k* vanishes after contraction.

I11.3.5 [1 point(s)]

Give the expression for the invariant amplitude M for the process.
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o i) = ) P (o)

iM = 2°(p1)(—iey")u’ (p2)

2
€2
= —Z?vs(m)’r“ur(m)lﬁLFv( ).

I11.3.6 [1 point(s)]

Square the invariant amplitude, average out over all initial spins and sum over all final ones. Give the final
result for the spin-averaged invariant matrix element squared |M|?2.

Taking the absolute value squared,

62 2
ME = (£) @ 0" a)” (0° 07 ) Ll Fy (9

62 2
N (_) (@ (p2)7"v° (p1)) (8° (P1)7" 0" (p2)) U,y | Fv (5)].

Averaging over all initial spin states,

(@ (p2)7"v* (1)) (8° (pL)7" " (p2)) Ll | Fi (5)]2
(@2 207505 (01) ) (55 (1) 5y (02) L B (5)]2
(03 0)T5 (1) (p2) T (P27 g7 ) Ll | P ()12

(1= me),, (Pabme), o ) LIy (9P

(7 (p = me) v (B, +me) ) LLIFY ()

I11.3.7 [1 point(s)]

Calculate the following trace

AZ’Y’LAM-
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jztr (7“ (;»1 = me) 1zf2 + me (p 5 +piph — —29 )
((k+l)“ =0 N (k+ 0¥ (k—Dr ng)

4 2
()
2

2
((ngW KIEY) + (1417)).

wl»—t

I11.3.8 [1 point(s)]

Express | M|? in terms of the Mandelstam variable s, the scattering angle 6, and the Killén function A, where

t—u
cos(as):ma
1/2 2 1/2 2 2
m(s)—)\ (s,m2, m2)A\Y2(s, m2, m)7

A(s,mf,m3) = (s — (m1+m2)?) (s — (m1 — my)?)

Using the resulting trace from above:

P =2 (_2) (29" — kR + (40 ) B )2
= H(E) e e mer
_z (_2)2 (s (4m2 = 5) + (£ = w? ) Fy (o)
4l (_2)2 (== 42) ~+2(s) cos? 9)) v (9.

Finally,

e
S
2\ 2
(e—> As, m2,m2) (1 - A(SL;”’%)cos'A‘(eg) Py ().
S S

I11.3.9 [1 point(s)]

Integrate | M|? over the solid angle to obtain [ |M|2d€.
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2]
/|M|2dQ:(27r) _:1 (%) )\(s,mf,,mf,)% (1 Wcos © )) |Fy (s)[2d cos(8s)

_ 2met 1 (s, mg, m2)

- 7oimZmd) (1- 3 2T ) e 2,

=2/3forme<s

I11.3.10 [1 point(s)]

Calculate the total cross section o +o— _ypt -

Hint

You may use the limit m?2 < s.

Using the expression for a 2-by-2 cross-section, one obtains
1 A/2(s,m2,m2) 1
Tetem—mtn— = g3 1/2(s, m2 2 a
642 A1/2(s,m2,m2) s
_2met N32(s,mZ,m2 ( 1 (s, me,me)) \Fy (5)2
T 64n2s3 AL/2(s,m2 v
mi<s  32m3a? )\3/2(3 m2 m2
a=e2 /4T - 647283

13 ) IR P

wa? A3/2(s,m2 m2
- —Qw(s)ﬁ

3 st




IV Other

IV.1 Breaking Classical Mechanics (5 points)

Construction of Quantum mechanics from Classical mechanics usually begins with a process known as
Quantization. This is usually done by constructing a map which takes observables to operators, that is:

.9} = —317.4]

Where {—, —} is the Poisson bracket and [—, —] is the commutator. One of the common properties of these
brackets is that they form a Lie algebra, that is, they satisfy the following properties:

1. The bracket [—, —] is billinear.
2. Forany f,gwe have [f,g] = —[g, f]

3. The bracket satisfies Jacobi identity, that is, for any f, g, h we have:

[f 19, Ml + 1g, [h, 1) + [, [f, 91 = O

IV.1.1 [5 point(s)]

Suppose that we have a “broken” classical mechanics in 3 dimensions, where {—, —} doesn’t satisfy the Ja-
cobiidentity. Prove that the resulting quantum mechanics would violate Heisenberg’s uncertainty principle.

{f,g} = W(va Xg)

it is easy to show that if {—, —} doesn’t satisfy Jacobi identity, then w is not closed (which is possible since w is not a top form),
and thus is not symplectic. Hence, we can choose a Hamiltonian vector field: X € Ham(M, w) s.t. we have:

Lxw=txdw+dixw=txdw #0

Then, for volume form we obtain voly; = w™ where n is s.t. dim M = 2n = 6, hence, we see that £ xvoly; # 0. Taking a volume
element U C M st. it is of minimal volume: Vol(U) = (h/2)3, and letting g* = exp(tX), we obtain:

d d
—Vol(gtU :7/ S Lxw® #0
a (g'U) @ ), 9 Exv #
that there exists an appropriate choice for X € Ham(M, w) s.t.:
iVol( tU) <0
at

is trivial. Hence, there exists time ¢t > 0 s.t.
Vol(g'U) < h3/8

which is less than the minimum volume, thus violating the Heisenberg’s uncertainty principle.
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IV.2 The Green’s Function (5 points)

Consider the Green’s function in three dimensions:

IV.2.1 [2 point(s)]

Show (A + k%)G(Z) = 0 for  # 0, where A is the Laplace operator.

The radial part of the Laplacian in spherical coordinates (here || = r) is written as

D oo
"Tr2or or

5 o +k2) eikr
P

Amr

1o}
( or 8
1 0 % ikeik:r eikr 2eikr
(ﬁ&r ( 47rr _47r7’2)+k E)
1o}
(%

A

Consequently,

ﬂ
|

Z'k,r.eikr eikr eik:'r
_ 42
A7 47 47r

1 (ikeikr k2petkr ) 1 iketkr k2 eikr)

47 47 T2 4g 47y

IV.2.2 [3 point(s)]

Show that G (&) satisfies the inhomogeneous differential equation

(A +E2)G(Z) = 6@ ().

Consider the integral
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Let us consider the integral.
ikr ikr
/ Bo(A + K2)G(F) = — Bz (v (ve ) + k26—>
|#|<1 |#|<1 4mr 4mr
Stokes’ theorem a3 <§ eikr) . /1 r2dr k2 etkr
|Z|<1 47r 0 T
ikr 1 .
—— a§ L (5N o) k2 [ rdreitr
d
|Z|<1 r \ 4Arr )~~~ 0
Z/r
= ikr 1 i
—— alsfi(6 )—kQ/ rdr T
|&|<1 r dr \ 4nr 0
a2
r=latthe, B e ikeik a ﬁ a k2 Tezkr 1 3 /1 dreikr
boundary |&|<1 47 47 ik 10 0 ik
dQ=4m .
—)f SN (zke’k — etF — jketk 4 etk 1)
=1
- / Bz 53 (7)
|Z]<1
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IV.3 Point group D; (5 points)

J

Figure 4: A molecule with Dg symmetry. Credits: Wikipedia.

Consider the dihedral group Dg = (b, ¢ | b*> = c® = (bc)? = €), which is the symmetry group for an unoriented
hexagon.

IV.3.1 [1 point(s)]

D¢ has 6 conjugacy classes. One element per class is given below:

Cly =Ae,...},
Cly ={c,...},
C€3:{02,...},
C€4:{03,...},
Cls ={b,...},
Clg = {bc,...}.

Complete the classes by adding corresponding elements within. Show why a specific element should belong
to a specific class.

Notall {...} are meant to be filled.

C¢y and C/4 contain single elements each, because e and ¢ compose the center of the group.
Using ¢—"b = bc™, we can show that b is conjugated with bc? and ¢2b:

cL(b)e =be?,

¢ 2(b)c? = bet.

Similarly,
¢ L(be)e = be3,

c=2(be)c?® = bcP.
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As for the other classes, c? is conjugated with ¢* by b (and the same holds for c and ¢:
b(2)b=bbe 2=c"2=ct
b(c)b=bbc"1=c"1=¢c"
With this, the complete list of classes is
Cl ={e}, Cla={c,P}, Cls={c? '},
{c } Cls = {b bc? bc4} Clg = {bc bc? bcs}

IV.3.2 [2 point(s)]

Letv =1,...,6 enumerate irreducible representations of D¢ and d,, denote the dimension of the representa-
tion. We consider a 6-dimensional representation D7), The characters for the irreducible representations
are given in Table 1. Fill the table by calculating the characters for D(7),

DWW d, | ce, Cly Cl; Cly Cl; Clg
DO 1| 1 1 1 1 1 1

p®» 11 -1 1 -1 -1 1

p®» 111 -1 1 -1 1 -1
DW 1| 1 1 1 1 -1 -1
DG 2 | 2 1 -1 -2 0 0

pe 212 -1 -1 2 0 0

DD 6

Table 1: Character table for Dg.

Don’t get confused by the notation: Dg stands for the dihedral group. D(*) stand for specific representations.

Since every element within a class has the same character, it’s sufficient to calculate the trace of a single element per class.
One way to do this is to actually look at the matrix forms of the elements. For the identity and the generators we have:

1 00 0 0 0 00 0 0 1 0 01 0 0 0 0
01 00 0 0 00 0 1 0 0 00 1 0 0 0
mn_ |0 0 1 0 0 0 My |0 0 1 0 0 0 M0 0 0 1 0 0
DPE=10 0010 o/ P"®=10 1 0 0 0 of* P7@O=|0 0 0 0 1 0
00 00 1 0 10 0 0 0 0 00 0 0 0 1
00 00 0 1 00 0 0 0 1 1 0 0 0 0 0
So,

X" (Ctr) = tr(DM(e)) = 6,

X" (Cts) = tr(DT (b)) = 2,

x"(Ct2) = tr(DM (c)) = 0.

Using the matrix forms above, ¢2, bc and be? can be constructed to show
X" (Cts) = tr(DD(c?))
X' (Cls) = 1tr(D(7 (be)) =
X" (Ct) = tr(D'V) (b 2))
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IV.3.3 [1 point(s)]

Using the characters derived in the previous section, decompose D() into irreducible representations.

The multiplicity ¢, of an irreducible representation D(*) within D(7) is given by
av N; (X" (CL:))* X7 (Cly),
|D6| Z NTx'ck)

where N; is the number of elements in class i and x” (C4;) is the character of the class i within representation D(*). Using the
table, we obtain

@=1 ¢=0¢3=1, ¢q=0, gs=1, ¢gg =1
Finally, we can write

D = pM o pB g PG g p©),

IV.3.4 [1 point(s)]

Consider a molecule with Dg symmetry, which transforms under D (an example is given on Figure 4).
What can you deduce about the energy levels (and their degeneracies) of this molecule, judging from the

decomposition of D(M)?

Since D(7) decomposes into 4 irreducible representations, we expect four different energy levels, with two of them doubly
degenerate (since two irreps have dimension 2). The trivial representation is expected to correspond to the ground state (lowest

energy level).
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IV.4 Dirac Equation: Angular Momentum and Parity (5 points)
The Dirac equation for spin-1/2 particles is written as

i0pp = H,
where

H = o' (p; — ¢A;) + fm + Iq®.

, (0 o (T 0
Here « _<ai O)andﬁ_(o —]I)'

We assume that the electric field is time-independent and rotationally invariant:
V(x) :=q®=V(r).
We take the vector potential to be vanishing: A; = 0. This simplifies the Hamiltonian to
H=a'p;, + Bm+1V
We combine the angular momentum and the spin operators
Li = €ijiijbr
1 (ot 0
Si= 2 (0 ai>
to obtain the total angular momentum operator

j,‘ = ]Ijii +5;.

IV.4.1 [1 point(s)]

Show that the commutation relations for J are
[jiajj:| = ieijnk, [ji’jﬂ =0

First of all, let’s take a look at the commutation relations for L and S separately,
[Livi/j] = iyl
[Sq;, Sj] = ieiijk

Both these relations result from the definitions of L, S. Also, it’s clear that these two operators commute, since they act on
different spaces. So,

[Ji, d5] =1 [, £5] + 156, 85)

= iGiijLk + ieijksk = ie'ijkjk
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As for the casimir operator,

[Ai,jj Aj:| = jj [j“jj] P [Ji,Jj] jj
= 1€k (j]jk + jkj]) =0

This is zero, because ¢, is totally antisymmetric and multiplying it on a symmetric object gives zero.

IV.4.2 [2 point(s)]

Show that J; and J2 commute with the given Hamiltonian:
[ﬁ, jz} —0, [H jﬂ —0.

By construction of our Hamiltonian,
[#1, ] = [aBi + Bm + 1V, 4]
~ [ou ] [ ] .5
— [ot ] [0

The third part disappeared because unity commutes with everything.
We calculate the rest separately,

[Oéiﬁz', jk] = [aiﬁi,ﬂzk + Sk]
=o' [5i, L] + [o%, S¢] b
[ﬁi,fzk] = [i) €kmnEmPn]
= €kmn [Dis Tm] Pn

= €kmn (_uszm)ﬁn

= 7i€k:inﬁn
0 ot ofF 0
ot 0)’\0 ok
0 ook — gkt
olok — gkgl 0

_1 0 1€ipno™
92 \eigno™ 0

= ieiknan

[ai,Sk]

1
2
1
2

So, finally,
[aiﬁiyjk] =a [ﬁz‘,ﬁk] + [af, Sk] pi
= —ia*eginPn + teipna™P; =0
As for the second term,
[Bm, Ji] = [Bm. 1L + Si]
= [Bm, Sk]

516 )6 M-

So, in all, J,, commutes with the Hamiltonian:
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As for the square operator,

IV.4.3 [2 point(s)]

Parity operator for spinors is defined as P, := AP and acts as

Psw(tﬁx) = ﬁ¢(t, _X)

Show that this operator commutes with A, .J;, and J2.

Hamiltonian and the angular momentum operators are built by the following set of operators:

{Hii,ﬂﬁi, 1L, sz-}

So, we check the commutations with these operators first:

(186, .| (2, %) = &: Poap(t, %) — Pusinp(t, %)
:8P(t,%) — BPE:Y(t,X)
28 (t, —X) — B(—=2:9(t, —X))
& B(t, —X) + BEY(t, —X)
22 B(t, —X)
= 2§7ips¢(trx)

[Mi, Ps] — 23, P,
{m, A} =0
Similarly, p;, being component of a non-axial vector, will also change sign under P and the results will be the same:
[Hﬁu Ps] = B,
{15:, 2.} =0
Conversely, L; is a component of an axial vector. It consists of both #; and p;. So, it will not change direction.
[1Ls, 2] it %) = LiPap(t, ) — PoLiwi(t, %)
= LiBPy(t,x) — BPLiy(t,X)

= LiBy(t,—X) — BL:(t, —X)
=0

[11151-, Ps] -0
{Mi, 135} — 20 Py
The spin operator S; does not have any spatial components and it commutes with the 8 matrix. So, consequentially,
(86, Pa] w(t,%) = SiPu(t, %) — PuSi(t, %)

= SiBPy(t,x) — BPS(t,X)
= Szﬂ’ll’(t, _X) - lew(ta _X)
=0

[si,ﬁg] =0

{Si,ﬁs} — 25, P,
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These two alone suffice to deduce that [ji, 153] = 0, and consequently, [j 2 Ps] =0.
As for the Hamiltonian,

[ﬁ, Ps] - [a"ﬁi +Bm+1V, Ps]
- [aiﬁi,PS]
=a [ﬁi,ﬁs] + [ai,lss] Di
= 20'p; Ps + [ai, 153] Di
= 2aip; Py + (a’ﬂﬁ - 5oﬂ'ﬁ>) Bi
=2a'p, Py + (8P + a'BP) i
= 2a'p; Ps + 20' B Pp;
=20 {p, P} =0
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IV.5 Transverse Magnetic Susceptibility of an Isotropic Ferromagnet (5 points)

In an isotropic ferromagnet, the ground state with all the spins polarized in the same direction is infinitely
degenerate. The ground state manifold represents a sphere whose points correspond to possible directions
of the spontaneous magnetization

N
M=N"1> (5.
i=1

In an external magnetic field ho the magnetization M will be aligned along ho. A small transverse magnetic
field i, (with o, - ho = 0) will slightly change the direction of M.

IV.5.1 [3 point(s)]
Calculate the transverse magnetic susceptibility of the ferromagnet

. OM(ho;hy)
X1(ho) = lim —2"—"

IM[=IM*|=m

M
h,

h /h=hy+h,

\X

X!

The magnetization in the ground state manifold only differs by the direction and the amplitude is fixed, thus |M| = |M'| =
const. Since |h | < |hol, then AN can also be regarded as perpendicular to M. This way, due to the similarity of triangles

given in the figure above, we have
|[ap| M M|

lhil Al /h2 + h%

M’ (ho,hy) = M + AM (ho, k1)

In it’s ground state: .
M= max {|M|}2

all spin configurations

_ 0AM(ho,hy)
Xhiso= Gn

_ 1M
ol

h =0 BhL V h% + hi

hi=0
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IV.5.2 [2 point(s)]

What is the property of x, in the limit Ay = 0? Explain the result.

The transverse magnetic susceptibility diverges in the limit ho = 0, since in this limit the rotational symmetry of the problem
is completely recovered and the system becomes extremely sensitive to arbitrarily small magnetic field.
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IV.6 Gaussian Integrals (5 points)
IV.6.1 [2 point(s)]

Let A be areal, symmetric, positive definite matrix. Show the following identity for multi-dimensional inte-
grals over real variables z;:

s 1 (2m)"/2 1.,
Hdl’i exp (——xkAklxl + Jkl‘k) = ——=€eXpP _JkA*l Jr ).
/i:1 2 Vdet A 2

Introduce notation

l':(w]_,...,l‘n)
Y= (Y1,---,yn)
J=(J1,-..,Jdn)

In this notation, our identity looks like this:

n
1 (2m)n/2 1 _
dx; ex —7xTAz+JTz) = exp (=JTA™ T
/Z:Hl’p(2 Vet P \2
Since A is symmetric, we can diagonalize it using orthogonal matrices. And because of the fact that it’s positive definite, this
orthogonal matrix will have determinant 1. Since orthogonal matrices satisfy OTO = I,,, we can write

A=0TApO
First, let’s set J = 0, so we're calculating

n n
/Hdzi exp (—EQL‘TALE) = /Hdml exp (—leOTADOm)

: 2 : 2
=1 =1

y=0Ox L 1 T

=5 = [ [] dwiexp —5v Apy

i=1
et(0)=t, :/dei exp(

1 1
=/dy1 exp (_5)\13}%) "'/dyn exp (_EAny?z)

_ Jem  fem _ @on2 (2m)n/?
Vo M VAL x VdetA
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Now, let’s put J back on:

w\'—‘

zTAa:—l—JTx):
W' +b")A(y+b) + JT(y+b))
1 T 1 T 1 T 1 T T T
delexp Y Ayfib Ayfiy Abfib Ab+ JTy +JTb
1 T T T 1 T T
= [ ][] dviexp —5Y Ay— (TA—-J )y—ib Ab+ JTb

T AL T 1
_basr / T dviexp (—-y"Ay - 7bTAb+ bTAb)
by setting b=A—1J - 2

o (-
(-
(-
e f _ﬁdy,-exp( ST Ay =¥ Ay = ST b+ Ty + )
(
S
(

1V.6.2 [3 point(s)]

Show that for complex variables z;, the previous result can be generalized as follows:

@m)"

detH exp (Ji kllJl)

/Hdzfdzi exp (—zpHrzi + Jize + Jipzf) =
i=1

where H is now hermitian, positive definite matrix.

As before, let’s start with J = 0 case.
Since H is hermitian, it can be diagonalized using unitary matrices, which satisfy UTU = I,,. Since it’s also positive definite,
there is a special unitary matrix (i.e. with determinant 1) that satisfies this:

H=U'HpU
So,

/ﬁ dz}dz; exp (21 Hz) = / ﬁ dz; dz; exp (—2'UHpU?)

i=1 =1

=5, / ﬁ dz;dz; exp (—U)THD'U/)
=1

M = / ﬁ dw} dw; exp (—wTHDw)

1:1

= / H dw} dw; exp (—\wiw;)
=il

= H/dw;“dwi exp (= w; w;)
i=1
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Since the integrals factorize, we only need to calculate one of them. Also, note that the sloppy notation of dw; dw; is, in reality,
dwi A dw; = d(z; — iy;) A d(z; 4+ iy;)
= dx; Ndx; + dx; Aidy; —idy; A dx; — dy; A\ dy;
antisymmetric

= 2idz; N\ dy;
property

. reintroducing the
= 2idz;dy; £

sloppy notation

Also, noting that w}w; = z2 + y2, we have

/dwi*dwi exp (—\wiw;) = 2i/d:ri exp (—\iz?) /dyi exp (—\iy?)

S I 271
=2,/ —.]— =
ViV i

/ﬁdz;‘dzi exp (—ZTHZ) = ﬁ/dw;dwi exp (—\;w; w;)
i=1

=1

Taking the product, we have

_ ﬁ 2mi  (2mi)" (27i)™
AL MN, detH

i=1
To go on, we introduce z = w + b and proceed as we did above:
2 Hpizr — Jizi — Jezg, = dH2— gtz — 2ty
(w' + N H(w +b) — JT(w +b) — (wh +67)J
wl Hw 4+ bt Hw + wl Hb + 6T Hb — JTw — JT6 — wlg — bt
=wlHw+ O H — 7w +wt (#Hb— J) + bt Hb — JTb —bTJ

b=H 'J
_—
setting

=wlHw +bTHb— JTb—bTJ
=wtHw+JtH= Y - JtH g —JtE
=wtHw—JtH=J

Putting this into our integral, we arrive at the final result:

n n
/H dzidziexp (—zpHyz) + Jizi + Jizg) = / H dzidz; exp (szHz +Jtz+ zTJ)
i=1

=1

= /i:ﬁldwi‘dwi exp (—wTHw) exp (JTH—IJ)

2mi)"
= %exp (JTH_:lJ)
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