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I Astrophysics

I.1 AGN (15 points)

It is believed that the accretion disk around supermassive black holes (BH) at galactic centres gives rise to
UV thermal emission. This emission is associated with Active Galactic Nuclei (AGNs).
The optical spectra of bright AGNs show additional bright broad emission lines. Those emission lines arise
from the dense gas in the Broad Line Region (BLR), which is ionized by the UV photons from the accretion
disk. See Figure 1 to visualise this model.

Figure 1

We can assume that the flux of broad emission lines varies in response to the variation of the UV continuum
with a time delay. This time delay should be proportional to the separation RBLR between the BH and the
BLR.
Assume that the size of the accretion disk is negligible as compared to RBLR.

I.1.1 [1 point(s)]

Estimate the time lag (days) between the B-band continuum and broad emission line Hβ using the light
curves shown in Figure 2. The x-axis is in reduced Julian Dates (JD).

Solution

Taking multiple reference points, we get that the BLR emission lags by about 20-25 days. Answers from 15 to 25 days are
acceptable.

I.1.2 [3 point(s)]

Estimate RBLR in parsecs (pc).
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Figure 2

Solution

As the AGN is located very far, the time lag can be approximated as the time taken by UV emission to reach BLR region. Thus,

RBLR = c∆t = 3× 108 × 20× 86400 = 5.2× 1014m = (0.017± 0.004)pc.

I.1.3 [2 point(s)]

Estimate the angular separation of this region �BLR (in arcsec) from the blackhole, if this AGN is 100Mpc
away from us. It is possible to estimate the mass of the system using the Virial theorem, if the velocity dis-
persion of the gasses in the BLR and the size of the system are known. Assume that themasses of the accre-
tion disk and broad line region are negligible, as compared to the black hole. The velocity dispersion vσ may
be estimated from the broadening of the given emission line. We will take the corresponding wavelength
dispersion to be

σ =
FWHM

2.35

where FWHM is the full width at half maximum of the broad emission line.

Solution

As the AGN is 100 MPC away from us,

θBLR =
0.017

100× 106
× 206265 = (3.5± 0.9)× 10−5arcsec

I.1.4 [5 point(s)]

Calculate the velocity dispersion vσ in units of km s−1, from the spectral line shown in Figure 3.
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Solution

The FWHM is approximately (85± 5)A and the peak is approximately at (4940± 5)A

vσ =
σc

λpeak
=
FWHM × c
2.35λpeak

=
85× 3× 105

2.35× 4940

vσ = (2200± 140)kms−1

Figure 3

I.1.5 [4 point(s)]

Calculate the mass of the central BH (Mvir;BH ) in a unit ofM�.

Solution

Mvir,BH =
v2σRBLR

G
=

(2.2× 106)2 × 5.2× 1014

6.674× 10−11
= 3.8× 1037kg

Mvir,BH = (1.9± 0.7)× 107M�

5



I.2 Mirror (10 points)

A bored cosmologist comes up with a thought experiment to determine the Hubble constant (H0) for his
model of a Steady-State-Universe. In this experiment, a large, fully reflecting flat mirror – carrying several
gyroscopes that would maintain its spatial orientation in the same plane – would be placed at a distance
D from the Solar System in a region without gravitational influences. From the Earth, a laser beam would
be directed towards that region for a long period of time. After a time T, the radiation would return and be
detected, allowing the determination of the fixed constantH0.

I.2.1 [7 point(s)]

Find an expression forH0 as a function of D, c (speed of light) and T. Consider that the separation S between
the Solar System and the mirror increases only due to the expansion of the universe according to the law
S = seH0t, where s is the initial separation. You may use ex ≈ 1 + x for x� 1, if necessary.

Solution

Let t1 be the time taken by the light beam from the Solar System to the mirror, let t2 be the time taken by the beam from the
mirror to the Solar System and T the total time to go back and forth. As a first order approximation, we will take distance
travelled by the photon in each part as an average of the initial and final distance. Therefore, equating the kinematics of the
situation, we have:

S1 =
D +DeH0t1

2
=
D(1 + eH0t1)

2
= ct1

S2 =
S1 + S1eH0t2

2
=
S1(1 + eH0t2)

2
= ct2

=
D

4
(1 + eH0t1 )(1 + eH0t2 )

≈
D

4
(2 +H0t1)(2 +H0t2)

≈
D

4
[4 + 2H0(t1 + t2)]

S2 = D(1 +
1

2
HoT )

From the first equation we also find:

S1 = ct1 =
D(1 + eH0t1 )

2

ct1 = D(1 +
1

2
Hot1)

t1 =
D

c− 1
2
DH0

S1 = ct1 =
2Dc

2c−DH0

similarly, S2 =
2S1c

2c− S1H0
.
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Joining the expressions found, we obtain:

S2 = D(1 +
1

2
H0T ) =

2S1c

2c− S1H0

D(1 +
1

2
H0T ) =

4Dc2

2c−DH0

2c− 2Dc
2c−DH0

H0

(1 +
1

2
H0T ) =

2c

2c−DH0 −DH0
=

c

c−DH0

c = (1 +
1

2
H0T )(c−DH0)

c = c−DH0 +
1

2
cH0T −

1

2
DH2

0T

0 =
H0

2
(cT − 2D −DH0T )

Ho =
cT − 2D

DT

Better approximation (considering the expansion of the Universe) would be to calculate the distance traveled as cdt rather than
ct. In dt the beam travels a distance of cdt. Because the space is stretched out, the travelled distance corresponds to a smaller
segment of space at t=0, smaller by a factor of exp(H0t). The distance spanned at t=0 is then

dr = exp(H0t)cdt

We integrate this from t=0 to t=T: ∫ 2D

0
dr = c

∫ T

0
exp(H0t)dt, 2D =

c

H0
(1− exp(−H0T ))

The result so far is accurate within the constraints of themodel, but it is not analytically solvable forH0. To get an estimate, we
can approximate the right hand side to

2D =
c

H0
(1− 1 +H0T −

(H0T )2

2
) = cT −

cH0T 2

2

ExpressingH0, we get

H0 =
2

cT 2
(cT − 2D)

The difference between this answer and the initial estimate is 2D/cT which is almost unitary.

I.2.2 [3 point(s)]

Imagine that such amirror is located in the vicinity of the star Vega. Vega was the first star outside the Solar
System to be photographed and one of the first stars whose parallax (p = 0.125”) was accurately measured
in 1840 by G. W. von Struve. Estimate the total duration of thisH0 measurement experiment.

Solution

From theH0 expression found in the previous item, we find the travel time

T =
2D

c−DH0
= (

c

2D
−
H0

2
)−1 ≈ (

c

2D
)−2 =

2D

c

T =
2× 8× 3.086× 1016

3× 108
= 1.65× 109s

T ≈ 52.2yr.
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I.3 Flat Earth (5 points)

A new model of the world is gaining in popularity among some people. These people believe in the “Flat
Earth” view of the world, where the Earth is not a spheroid, but rather a circle with radius R⊕. The central
axis of the Earth (normal to the circle passing through its centre C) is passes through the observer’s zenith.
This model must at least remain consistent with the observed phenomena, as listed below:

• The value of the solar constant is S� = 1366W/m2

• The Earth’s central axis precesses in a circle with a period 25800 years.

• The radius of the precession circle is 23.5◦

Weassume that the Earth is a perfect blackbody radiator and the Sun is sufficiently far away that all sun rays
are parallel. Let us also assume that the Sun’s current (initial) location is at the zenith.

I.3.1 [5 point(s)]

Determine howmany years it will take for the Earth’s equilibrium temperature to decrease by 1◦°C.

Solution

Assume the surface area of one side of the flat earth is A. Let the angle between the Sun and the flat Earth’s center axis be θ,
where θ is initially 0o. As the Sun’s rays are parallel, the power delivered to the Earth by the Sun will be S�A cos θ at any given
point in time.
At equilibrium this is the energy radiated via blackbody radiation, so the equilibrium temperature T satisfies

S�A cos θ = σ(2A)T 4,

where the factor 2 comes from the fact that flat Earth would radiate energy from both sides. This gives

T (θ) =
4

√
S� cos θ

2σ
.

We wish to find the value θ̃ such that T (θ̃) = T (0)−∆T .

4

√
S� cos θ̃

2σ
=

4

√
S�

2σ
−∆T,

cos θ̃ =

(
1−∆T 4

√
2σ

S�

)4

=

1−∆T
4

√
2× 5.67× 10−8

1366

4

= 0.9880.

Now we find the time it takes for the axis to make such an angle with the Sun. On the celestial sphere, let O be the center of
precession, Z be the current direction of the axis, andX be the direction of the axis when it makes an angle θ̃ with the sun, i.e.
]ZCX = θ̃. If ε is the radius of precession, then ]OCZ = ]OCX = ε.
By the spherical law of cosines on angleO of spherical triangleOXZ, we have

cos θ̃ = cos ε cos ε+ sin ε sin ε cos(^O)

= cos2 ε+ sin2 ε cos(^O)

^O = cos−1

(
cos θ̃ − cos2 ε

sin2 ε

)

∆t =
^O

2π
× P =

P

2π
× cos−1

(
cos θ̃ − cos2ε

sin2 ε

)

=
25800

2π
× cos−1

(
0.9880− cos2 23.5o

sin2 23.5o

)
≈ 1606 yr.

Therefore, the average temperature of the Earth will go down by 1oC in just over 1600 years.
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II Condensed Matter Physics

II.1 Two-site Problem (5 points)

Consider a potential representing two inequivalent wells separated by a barrier. In the limit of infinitely high
barrier the two localized states have energies ε1 and ε2. For a finite barrier a fermion can tunnel between the
states 1 and 2. Let the corresponding amplitude be τ . One can write down the Hamiltonian as

H = ε1c
†
1c1 + ε2c

†
2c2 − τ(c†1c2 + c†2c1).

II.1.1 [2 point(s)]

Diagonalize the Hamiltonian and find its spectrum.

Solution

Introduce two new parameters ε and∆, such that

ε1 = ε+∆, ε2 = ε−∆.

In terms of these parameters, the Hamiltonian becomes

H = ε(c†1c1 + c†2c2) + ∆(c†1c1 − c
†
2c2)− τ(c

†
1c2 + c†2c1).

c†1c1 + c†2c2 is a total particle number operator, which is conserved and can be substituted by corresponding particle number
(in our case by 1). This yields a constant number and only amounts to a uniform global shift of the energy scale - therefore we
can discard it. The residual part can be compactly written as

H = Ψ†HΨ

where
H = ∆σz − τσx, Ψ =

(
c1
c2

)
FromH = ∆σz − τσx, the spectrum is simplyE = ±ε, with ε =

√
τ2 +∆2. Using the rotation matrix

S =

(
cos θ − sin θ
sin θ cos θ

)
such that cos 2θ = ∆/ε and sin 2θ = τ/ε, we get

H = εφ†σzφ, φ = SΨ =

(
b1
b2

)
.

II.1.2 [3 point(s)]

Imagine that at t = 0 the fermion was localized in the state 1. Calculate the probability to find the electron in
the same state at the moment t.

Hint

Consider the transition amplitude 〈0|c1(t)c†1(0)|0〉, where c1(t) = eiHtc1e−iHt.

Solution

Tocalculate theprobability of findinga fermion in the samesite after time t, weuse the transitionamplitudeand theHeisenberg
representation of operators.
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〈0|c1(t)c†1(0)|0〉 = 〈0|c1(t)c
†
1|0〉.

Now the following manipulations are made

c1(t)c
†
1 = eiHtc1e

−iHtc†1 = eiεt(b
†
1b1−b

†
2b2)(cos θb1 + sin θb2)e−iεt(b

†
1b1−b

†
2b2)c†1.

Since [b†1b1, b2] = [b†2b2, b1] = 0, we have

c1(t)c
†
1 = (cos θeiεtb

†
1b1b1e

−iεtb
†
1b1 + sin θe−iεtb

†
2b2b2e

iεtb
†
2b2t)c†1.

Since b1(t) = eiεb
†
1b1tb1e

−iεb
†
1b1t, the equation ofmotion db1(t)

dt
= i[H, b1(t)] gives b1(t) = eiεtb1. Similarly b2(t) = e−iεtb2. This

way, we have

c1(t)c
†
1 = (cos θeiεtb1 + sin θe−iεtb2)c

†
1.

Expressing b1 and b2 back with c1 and c2 gives

c1(t)c
†
1 = (cos θeiεt(cos θc1 − sin θc2) + sin θe−iεt(sin θc1 + cos θc2))c†1.

Taking the average 〈0|...|0〉, the terms that have c2 will give zero after taking the average, since we create only one fermion at
site 1 with c†1 and there is nothing to destroy with c2. Thus we have

〈0|c1(t)c†1|0〉 = cos2 θeiεt + sin2 θe−iεt

The absolute value of this quantity gives the probability of finding a particle on site 1 at time t, when it was localized at the same
site at t = 0.

P (t) = cos2 εt+ cos2(2θ) sin2 εt = cos2 εt+ sin2 εt
∆2

√
∆2 + τ2
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II.2 Quantum Ising Model and Majorana Fermions (13 points)

Quantum Ising model (Also known as 1D Ising model in a transverse magnetic field) is a toy model famous
for exhibiting quantum phase transition, i.e. transition not driven by temperature but instead driven by
external magnetic field. We consider T = 0 case. The Hamiltonian of the model is:

Ĥ[{σ}] = J

(
−λ

N∑
n=1

σ̂x
n −

N−1∑
n=1

σ̂z
nσ̂

z
n+1

)
1. (II.1)

J > 0 is the coupling constant of z− z interaction and λ ≥ 0 is a dimensionless parameter, that characterizes
the amplitude of a transversemagnetic field h = Jλ. σ̂x

n and σ̂z
n are the Paulimatrices for spin- 12 , each defined

on a site physical site n of the chain. These Pauli matrices obey the known SU(2) algebra relations when
defined on the same site and commute when the site indices are different. Traditionally, we take σ̂z

n to be a
diagonal matrix, with eigenvalues of +1 (spin up, | ↑〉z) and −1 (spin down, | ↓〉z). We can also express spin
up/down in x direction in the z basis as: | ↑〉x = | ↑〉z + | ↓〉z and | ↓〉x = | ↑〉z − | ↓〉z. As an example, the states
of this system expressed in the z basis can be written as

| ↑1〉z ⊗ | ↓2〉z ⊗ ...⊗ | ↑j〉z ⊗ ... = | ↑1, ↓2, ..., ↑j , ...〉z (II.2)

meaning that the first spin looks along z direction, the second in the opposite and etc. Similarly, for the x
basis we have

| ↑1〉x ⊗ | ↓2〉x ⊗ ...⊗ | ↑j〉x ⊗ ... = | ↑1, ↓2, ..., ↑j , ...〉x (II.3)

II.2.1 [1 point(s)]

What is the global discrete symmetry of this problem? Express the unitary operator Û in terms of Pauli
matrices, under which

σ̂α
n → Û σ̂α

n Û
†, so that ÛĤ[{σ}]Û† = Ĥ[{σ}].

Solution

The problemhas a globalZ2 symmetry: Flipping the sign of all σ̂z matrices at each siten leaves the anti-commutation relations
intact and theHamiltonian stays invariant. This is equivalent to a rotation of all the spins around thex-axis by an angleπ. Since
σxσzσx = −σz andall Paulimatrices commute if they aredefinedonadifferent sitesn, theunitary operator Û that corresponds
to spin-flip symmetry is the following string-operator

Û =
N∏
i=1

σ̂i
x

II.2.2 [2 point(s)]

Argue what could be the ground state configurations of spins for λ = 0 and λ = +∞, expressed as Eq.(II.2).
What would happen if we used Eq.(II.3) instead? What are the possible values of the total spin along z di-
rection (i.e. magnetization, interpreted as the so-called order parameter of the problem) in these limits and
why should we expect a phase transition point at an intermediate value λ = λc?

Hint

The model possesses a global discrete symmetry.

1σ̂z
nσ̂

z
n+1 ≡ σ̂z

n ⊗ σ̂z
n+1

11



Solution

When λ = 0, there is no transversemagnetic field in the Hamiltonian and all we are left with is Ĥ[{σ}] = −J
∑N−1

n=1 σ̂
z
nσ̂

z
n+1. In

the ground state, all of the spins are either looking up or down in z direction- thuswehave a perfect order of spins in z direction.
The choice of all-up and all-down breaks the globalZ2 symmetry and the possiblemagnetization is eitherN or−N . When λ→
+∞, the transverse part of the Hamiltonian is dominating over the z− z interaction and thus we have Ĥ[{σ}] = −Jλ

∑N
n=1 σ̂

x
n.

In the ground state for this regime, all of the spins are looking only along x direction. This means that the global Z2 symmetry
is not broken. On the other hand, all spins looking up in x direction translates to totally disordered spin configuration along z
direction and thus there is nomagnetization. The order at λ = 0 and disorder at λ→ +∞ limits, a consequence of breakdown
and recovery of Z2 symmetry demands a phase transition in the intermediate regime of λ = λc.

II.2.3 [3 point(s)]

To extract a precise value of λc, we exploit a concept of self-duality. For convenience, let us denote links that
connect sites n and n+ 1 as n+ 1

2 and define two newmatrices in the following way

µ̂z
n+1/2 =

n∏
j=1

σ̂x
j , µ̂x

n+1/2 = σ̂z
nσ̂

z
n+1. (II.4)

µ̂matrices satisfy exactly the same algebra as σ̂. Eq.(II.4) is known as the duality transformation. The action
of µ̂z

n+1/2 on spin configuration is, for instance

µ̂z
n+1/2| ↑1, ↑2, ..., ↑n−1, ↑n, ..., ↑N 〉z = | ↓1, ↓2, ..., ↓n, ↑n+1 ..., ↑N 〉z, (II.5)

meaning that µ̂z
n+1/2 operator creates a domain wall in the spin configuration and thus disordering the sys-

tem, hence the name - disorder operator. Invert the transformation Eq.(II.4), by expressing σ̂ operators in
terms of µ̂ operators and rewrite Eq.(II.1) Hamiltonian in terms of µ̂ operators, denoting it as Ĥ[{µ}]. Let us
forget for a second that initially we were working in the spin-up/down basis of σ̂z matrices and assume that
Ĥ[{µ}] is the starting Hamiltonian, therefore wework in spin-up/down basis of µ̂z instead. What are the pos-
sible values of the total disorder parameter in λ → +∞ and λ = 0 limits of Ĥ[{µ}] Hamiltonian? How does it
comparewith the same regimes for Ĥ[{σ}]? Extract the value of λwhen theHamiltonianmaps to itself under
the duality transformation, corresponding to the critical value λc. The Lee-Yang theorem justifies that there
is only a single critical point in themodel. Draw a phase diagram of Ĥ[{σ}] quantum Isingmodel, indicating
the region of order and disorder.

Solution

µ̂zn−1/2µ̂
z
n+1/2 =

n−1∏
j=1

σ̂x
j

n∏
j=1

σ̂x
j = σ̂x

n,

n−1∏
j=0

µ̂xn+1/2 =

n−1∏
j=0

σ̂z
j σ̂

z
j+1 = σ̂z

n.

The Hamiltonian written in terms of µ̂matrices will be

Ĥ[{µ}] = J

−λ N∑
j=1

µ̂zn−1/2µ̂
z
n+1/2 −

N−1∑
j=1

µ̂xn+1/2

 .

In the λ = +∞ case, the value of the total disorder parameter is non-zero (can beN or−N ) and in λ = 0 case the total disorder
is zero. Comparing these regimes for Ĥ[{σ}] and Ĥ[{µ}], we see that for λ = 0 the order parameter is nonzero and the disorder
parameter is zero, while for λ = +∞ the order parameter is zero and the disorder parameter is nonzero. The Hamiltonian is
self-dual when λ = 1, thus λc = 1. For λ < 1 the system is ordered and for λ > 1 the system is disordered.

II.2.4 [3 point(s)]

The Jordan-Wigner transformation maps bosonic spin-1/2 operators onto the fermionic creation and an-
nihilation operators in a very non-local fashion. Under the Jordan-Wigner transformation Eq.(II.1) exactly

12



maps onto the model of a 1-dimensional p-wave superconductor (1DPS)

Ĥ[{σ}] → Ĥ1DPS = −λJ
N∑

n=1

(2â†nân − 1)− J

N−1∑
n=1

(
â†nân+1 + â†n+1ân + â†nâ

†
n+1 + ân+1ân

)
, (II.6)

where â†n and ân are the creation and annihilation operators of spinless fermions at site n. These operators
obey standard anti-commutation relations

{â†n, âm} = δnm, {ân, âm} = 0. (II.7)

The last two terms correspond to the superconducting coupling, creating and destroying two particles at a
time. Due to this, the total particle number operator Q̂ =

∑N
n=1 â

†
nân does not commute with Ĥ1DPS and the

total particle number conservation is violated. However, the parity of the particle number is conserved - we
either have odd or even number of particles in the system. The corresponding parity operator is

P̂ = e−iπQ̂. (II.8)

Ĥ1DPS model has a notorious feature in it’s single-particle energy spectrum:

For λ > λc (Same λc as it was in the Quantum Ising model) the spectrum of the Ĥ1DPS is depicted on (A).
However, as soon as λ < λc condition is satisfied, depicted on (B), a mysterious energy level emerges - with
energy exactly equal to zero! This corresponds to the so-called Majorana edge zero mode - a topologically
protected mode, located at the left and right edges of the system. To get the essence of Majorana fermion,
a simple analogy comes in handy: A complex number z can be split up as its real a and imaginary b parts,
yielding z = a+ ib. In a similar way, a creation and annihilation operator of a fermion can be represented as
its ”real” and ”complex” parts as

âj =
1

2

(
ζ̂j − iη̂j

)
, â†j =

1

2

(
ζ̂j + iη̂j

)
, (II.9)

where ζ̂j and η̂j are the two Majorana fields. Derive the anti-commutation relations that the Majorana fields
obey. Rewrite the Hamiltonian Eq.(II.6) and the Parity operator Eq.(II.8) in terms of the Majorana fields.
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Solution

First we invert Eq.(II.9) and express η̂j and ζ̂j in terms of â†j and âj :

ζ̂j = âj + â†j , η̂j = i
(
âj − â†j

)
.

The fermionic anti-commutation relations give

{ζ̂j , ζ̂j′} = {η̂j , η̂j′} = 2δjj′ , {ζ̂j , η̂j′} = 0. (II.10)

The Hamiltonian Eq.(II.6) in terms of Majorana fields is

Ĥ1DPS = iλJ

N∑
j=1

ζ̂j η̂j + iJ

N−1∑
j=1

η̂j ζ̂j+1

and for the parity operator we have

P̂ =
N∏

j=1

(−iζ̂j η̂j).

II.2.5 [4 point(s)]

Generally, Majorana zero mode Ψ̂ is an operator with the following properties:

[Ĥ, Ψ̂] = 0, {P̂ , Ψ̂} = 0, Ψ̂†Ψ̂|N→∞ = 1. (II.11)

For a zero mode to be also an edge mode, it must be localized at the boundaries of the system. Let us de-
note such right and left edge zero mode operator as Ψ̂R and Ψ̂L. The matrix elements of Ψ̂R,L must decay
exponentially as we move l distance away from the corresponding boundary. If λ = 0, then ζ̂1 and η̂N do not
appear in the Hamiltonian at all, they are completely isolated from the rest of the system. They also anti-
commute with the parity operator and satisfy the normalization condition. Since both of them are localized
at the left and right edges of the chain, they are an exact edge zero-mode operators

Ψ̂L(λ = 0) = ζ̂1, Ψ̂R(λ = 0) = η̂N . (II.12)

The 1DPS is in a topologically non-trivial state when |λ| < λc, therefore we need to check if the edge zero-
mode operators persist as we deviate from λ = 0 point and see how does it get modified. For concreteness,
let us concentrate on the left edge mode operator Ψ̂L only. Develop an iterative method to write down the
expression for Ψ̂n

L(λ), n indicating that Eq.(II.12) has been corrected upto n order in λ. After the last possible
step of the iteration, under what condition can we take [Ĥ1DPS, Ψ̂

N−1
L ] = 0? What about Ψ̂R? What happens to

both modes when |λ| > λc?

Hint

Iteration method - Suppose we have two operators Â = B̂ + Ĉ and Ẑ, such that [B̂, Ẑ] = 0, but [Ĉ, Ẑ] = D̂. Find Ẑ′ , such that
[B̂, Ẑ

′
] = −D̂ and add it to the initial Ẑ. Repeat.

Solution

The Hamiltonian is naturally split into two parts Ĥ1DPS = B̂ + Ĉ

B̂ = iλJ
N∑

j=1

ζ̂j η̂j , Ĉ = iJ

N−1∑
j=1

η̂j ζ̂j+1.

[Ĉ, ζ̂1] = 0 is always valid, since ζ̂1 operator is completely absent from Ĉ. This way

[Ĥ1DPS, ζ̂1] = [B̂, ζ̂1] = −2iλJη̂1.

14



Introduce a new operator ô(1), such that [Ĉ, ô(1)] = 2iλJη̂1. Such operator is ô(1) = λζ̂2. At this level we have Ψ̂(1)
L = ζ̂1 + λζ̂2.

Transfer j = 1 term from Ĉ to B̂ and define

B̂(1) = iλJ

N∑
j=1

ζ̂j η̂j + iJη̂1ζ̂2, Ĉ(1) = iJ

N−1∑
j=2

η̂j ζ̂j+1.

Now [Ĥ1DPS, Ψ̂
(1)
L ] = [B̂(1), Ψ̂

(1)
L ] = −2iλ2Jη̂2. The operator ô(2) that gives [Ĉ1, ô(2)] = 2iλ2Jη̂2 is ô(2) = λ2ζ̂3. Doing this

iterationN − 1 times gives the exact solution for arbitrary λ

Ψ̂
(N−1)
L (λ) = ζ̂1 + λζ̂2 + λ2ζ̂3 + ...+ λN−1ζ̂N .

Similarly
Ψ̂

(N−1)
R (λ) = η̂N + λη̂N−1 + λ2η̂N−2 + ...+ λN−1η̂1.

When |λ| < 1, further we are from the boundary, the smaller is the corresponding contribution, meaning that the modes are
localized at the edges of the system. [Ĥ1DPS, Ψ̂

(N−1)
L ] ∼ λN , thus for |λ| < 1 taking a thermodynamic limit heals everything. If

|λ| > 1, then non of Eq.(II.11) are satisfied.
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II.3 AKLTModel (12 points)

We consider the following Hamiltonian

HAKLT = J
∑
i

~Si · ~Si+1 +K
∑
i

(
~Si · ~Si+1

)2
,

where ~Si = (Sx
i , S

y
i , S

z
i ) is the vector spin-1 operator at site i.

Each site has local Hilbert space with three states: |−1〉 , |0〉 , |+1〉.

II.3.1 [2 point(s)]

Consider an operator Âwith discrete eigenvalues an. Define P̂ (m) as

P̂ (m) = C
∏
n6=m

(
Â− an

)
,

where C is a normalization constant. Show that P̂ (m) acts as a projection operator and determine the nor-
malization constant C.

Hint

Projector satisfies

P̂ (m) |ψn〉 =
{
0 for n 6= m,

|ψn〉 for n = m.

Solution

P̂ (m) |ψm〉 = |ψm〉

C
∏
n 6=m

(
Â− an

)
|ψm〉 = |ψm〉

C
∏
n 6=m

(am − an) |ψm〉 = |ψm〉

C =
1∏

n 6=m (am − an)

II.3.2 [2 point(s)]

Consider two neighbouring sites i and i + 1. What are the possible eigenvalues of the total spin operator
~S2
tot =

(
~Si + ~Si+1

)2
?

Hint

How does one combine two spin-1 degrees of freedom?

16



Solution

1⊗ 1 = 2⊕ 1⊕ 0
~S2
tot = 6, 2, 0.

(In general, ~J2 = j(j + 1).)

II.3.3 [2 point(s)]

Using the results of the first two sub-problems construct a projection operator P (2)
i,i+1 that projects onto the

total spin-2 subspace of the combined spin-1 degrees of freedom at sites i and i + 1. Express it in terms of
~Si and ~Si+1. What is the relationship between this projector and the AKLT Hamiltonian? What is the ground
state energy of the AKLTmodel?

Hint

(~S)2 = 2 for spin 1.

Solution

P
(2)
i,i+1 = C

(
~S2
tot − 2

)
~S2
tot

~S2
tot = (~Si + ~Si+1)

2 = ~S2
i + ~S2

i+1 + 2~Si · ~Si+1

~S2
i = ~S2

i+1 = 2 =⇒ ~S2
tot = 2

(
2 + ~Si · ~Si+1

)
Using C = 1

(6−2)6
= 1/24, we obtain

P
(2)
i,i+1 =

1

24

(
2 + 2~Si · ~Si+1

)(
4 + 2~Si · ~Si+1

)
=

1

3
+

1

2
~Si · ~Si+1 +

1

6

(
~Si · ~Si+1

)2
.

ForK = 1
6
and J = 1

2
,

HAKLT =

N−1∑
i=0

P
(2)
i,i+1.

II.3.4 [2 point(s)]

Consider two sites i and i+ 1 and split the spin-1 degrees of freedom into two spin-1/2 degrees of freedom.
The two sites combined will now have 4 spin-1/2 degrees of freedom. How can we combine these 4 degrees
of freedom in order to minimize the AKLT Hamiltonian for this pair of sites? Write down the associated
ground state wavefunction |Ψ0〉i,i+1 using spin-1/2 states, |α, β〉i |γ, δ〉i+1, where α, β, γ, δ take the values ↑, ↓.

Hint

For instance, state |↑, ↑〉i |↑, ↑〉i+1 would mean all four spin-1/2 projections are spin-up, i.e. Sz = +1/2.

Solution

Since 1
2
⊗4

= 2⊕ 1⊕3 ⊕ 0⊕2 and P (2)
i,i+1 projects to 2, spin-1/2 must be combined to give at most spin 1.
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|Ψ0〉i,i+1 =
|α ↑〉i |↓ β〉i+1 − |α ↓〉i |↑ β〉i+1√

2
.

Whatever α, βmay be, this state will have at most spin 1, since

|↑↓〉 − |↓↑〉
√
2

is spin singlet state.

spin 1

spin 1/2
singlet pairing

II.3.5 [2 point(s)]

Construct an operator T̂i that converts from the spin-1/2 triplet basis to the spin-1 basis, e.g. T̂i |↑, ↑〉i = |+1〉i.

Hint

One can write such operator in the form T̂i = tσα,β |σ〉i 〈α, β|i, where α, β =↑, ↓ and σ = −1, 0, 1.

Solution

Let T̂ = tσα,β |σ〉 〈α, β|.

t+↑↑ = t−↓↓ = 1,

t0↑↓ = t0↓↑ =
1
√
2
.

The rest are all 0.

II.3.6 [2 point(s)]

Combining the results of II.3.4 and II.3.5 write down the ground state wavefunction of the AKLTmodel. State
the difference between periodic and open boundary conditions. What is unusual about the edges in the case
of open boundary conditions?

Solution

TiTi+1 |Ψ0〉i,i+1 =
1
√
2
tσαβt

σ′
α′β′ |σ〉 |σ′〉

(
〈αβ|α′′ ↑〉 〈α′β′| ↓ β′′〉 − 〈αβ|α′′ ↓〉 〈α′β′| ↑ β′′〉

)
=

1
√
2
|σ〉 |σ′〉

(
tσα′′↑t

σ′
↓β′′ − tσα′′↓t

σ′
↑β′′

)
.
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Periodic boundary conditions:

Open boundary conditions:

↑ ↑
For open boundary conditions we see spin-1/2 states on the edges.
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III Particle Physics

III.1 Born Approximation (10 points)

III.1.1 [1 point(s)]

For a particle with massm, the first Born approximation is defined as

f (1)(k′
,k) = − 1

4π

2m

h̄2

∫
d3x ei(k−k

′)·xV (x),

where V (x) is the scattering potential. Show, that for a spherically symmetric potential this simplifies to

f (1)(k′
,k) = −2m

h̄2
1

q

∫ ∞

0

rdr sin(qr)V (r).

The scattering is elastic.

Solution

We consider elastic scattering, when the energy is conserved and |k| = |k′| ≡ k, so we define |k− k′| ≡ q = 2k sin(θ/2). In the
case of the spherically symmetric potential, this simplifies to

f (1)(k′,k) = − 1

4π

2m

h̄2

∫
dφ d(cos(θ′)) r2dr ei|k−k′|r cos(θ′)V (r)

= −
1

4π

2m

h̄2
2π

∫
d(cos(θ′)) r2dr ei|k−k′|r cos(θ′)V (r)

= −
1

4π

2m

h̄2
2π

∫
r2dr

[
ei|k−k′|r cos(θ′)

i|k− k′|r

]π
−π

V (r)

= −
1

4π

2m

h̄2
2π

∫
r2dr

[
ei|k−k′|r − e−i|k−k′|r

i|k− k′|r

]
V (r)

= −
1

4π

2m

h̄2
2π

∫
r2dr

[
eiqr − e−iqr

iqr

]
V (r)

= −
1

4π

2m

h̄2
2π

∫
r2dr

[
2 sin(qr)

qr

]
V (r)

= −
1

4π

2m

h̄2
4π

q

∫
rdr sin(qr)V (r)

= −
2m

h̄2
1

q

∫ ∞

0
rdr sin(qr)V (r)

III.1.2 [2 point(s)]

A particle of massm is scattered in the Yukawa potential:

V (r) =
V0
r
e−κr.

Using the result above calculate the differential cross-section in the first Born approximation.
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Solution

Plugging in our potential,

f (1)(k′,k) = −2m

h̄2
1

q

∫ ∞

0
rdr sin(qr)V (r)

= −
2m

h̄2
V0

q

∫ ∞

0
rdr sin(qr)

e−κr

r

= −
2m

h̄2
V0

q

∫ ∞

0
dr sin(qr)e−κr

= −
2m

h̄2
V0

q
Im
[∫ ∞

0
dr eiqre−κr

]
∫ ∞

0
dr eiqre−κr =

∫ ∞

0
dr e(iq−κ)r

=

[
e(iq−κ)r

iq − κ

]∞
0

= −
1

iq − κ

=
κ+ iq

κ2 + q2

So,

f (1)(k′,k) = −2m

h̄2
V0

q
Im
[
κ+ iq

κ2 + q2

]
= −

2m

h̄2
V0

q

q

κ2 + q2

= −
2m

h̄2
V0

κ2 + q2

= −
2m

h̄2
V0

κ2 + 4k2 sin2(θ/2)

Cross-section is just the amplitude squared:

dσ

dΩ

(1)

= |f(k′,k)|2 =
4m2

h̄4
V 2
0

(κ2 + 4k2 sin2(θ/2))2

III.1.3 [1 point(s)]

For what values of κ and V0 is the Born approximation reasonable at low energies?

Solution

To check the validity of our approximation, we note that for large r the wavefunction is modulated as

〈x|ψ(+)〉 = 〈x|k〉 − 1

4π

2m

h̄2

∫
d3x′

eik|x−x′|V (x′)
|x− x′|

〈x′|ψ(+)〉
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The second part of the equation must approach zero in the scattering region (i.e. |x| ≈ 0).∣∣∣∣∣ 14π 2m

h̄2

∫
d3x′

eik|x−x′|V (x′)
|x− x′|

〈x′|k〉

∣∣∣∣∣� 1∣∣∣∣∣ 14π 2m

h̄2

∫
d3x′

eik|x
′|V (x′)
|x′|

eik·x
′

(2π)3/2

∣∣∣∣∣� 1∣∣∣∣∣ 14π 2m

h̄2

∫
d3x′

eikx
′
V (x′)

x′
eikx

′ cos θ

(2π)3/2

∣∣∣∣∣� 1∣∣∣∣∣ 14π 2m

h̄2
4π

∫
(x′)2dx′

eikx
′
V (x′)

x′
sin(kx′)

(2π)3/2kx′

∣∣∣∣∣� 1∣∣∣∣∣2mh̄2 V0

(2π)3/2

∫
(x′)2dx′

eikx
′

x′
e−κx′

x′
sin(kx′)
kx′

∣∣∣∣∣� 1∣∣∣∣2mh̄2 V0

(2π)3/2

∫
dx′ eikx

′
e−κx′ sin(kx′)

kx′

∣∣∣∣� 1

In the approximation of small k, ∣∣∣eikx′ ∣∣∣ = 1 =

∣∣∣∣ sin(kx′)kx′

∣∣∣∣
So, we’re left with

∣∣∣∣2mh̄2 V0

(2π)3/2

∫
dx′ e−κx′

∣∣∣∣� 1∣∣∣∣2mh̄2 V0

(2π)3/2
1

κ

∣∣∣∣� 1∣∣∣∣2mh̄2 V0κ
∣∣∣∣� 1

where we have removed the insignificant factor (2π)3/2.

III.1.4 [1 point(s)]

In the limit κ → 0 Yukawa potential transforms into Coulomb interaction. Show that the cross-section (or
rather, the first Born approximation) describes Rutherford scattering in this limit.

Solution

We set κ = 0 and V0 = ZZ′e2, so one obtains

dσ

dΩ

(1)

=
4m2

h̄4
V 2
0

(κ2 + 4k2 sin2(θ/2))2

=
4m2

h̄4

(
ZZ′e2

)2
(4k2 sin2(θ/2))2

=
4m2

h̄4

(
ZZ′e2

)2
16k4 sin4(θ/2)

III.1.5 [2 point(s)]

The second Born amplitude is defined as

f (2)(k′
,k) = − 1

4π

2m

h̄2
(2π)3

〈
k′
∣∣∣∣V 1

E −H0 + iε
V

∣∣∣∣k〉 .
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Show that the forward scattering amplitude for the Yukawa potential is given by

f (2)(k,k) = −4π

(
2m

h̄2

)2
V 2
0

(2π)3
4π

∫ ∞

0

k̃2dk̃

(k2 − k̃2 + iε)(κ2 + (k − k̃)2)(κ2 + (k + k̃)2)

Solution

The forward scattering condition just sets k′ = k. So,

f (2)(k,k) = − 1

4π

2m

h̄2
(2π)3

〈
k
∣∣∣∣V 1

E −H0 + iε
V

∣∣∣∣k〉
= −

1

4π

2m

h̄2
(2π)3

∫
d3k̃

1

E − h̄2k̃2/2m+ iε
〈k|V |k̃〉 〈k̃|V |k〉

= −
1

4π

(
2m

h̄2

)2

(2π)3
∫
d3k̃

1

k2 − k̃2 + iε
| 〈k|V |k̃〉 |2

We have used the hermitian property of V operator. Next, we calculate the matrix product:

〈k|V |k̃〉 =
∫
d3x 〈k|V |x〉 〈x|k̃〉

= V0

∫
d3x

e−κr

r
〈k|x〉 〈x|k̃〉

= V0

∫
d3x

e−κr

r

ei(k̃−k)·x

(2π)3

= 2πV0

∫
d(cos θ)r2dr

e−κr

r

ei|k̃−k|r cos θ

(2π)3

= 4πV0

∫
r2dr

e−κr

r

sin(|k̃− k|r)
(2π)3|k̃− k|r

= 4π
V0

(2π)3q

∫
dre−κr sin(qr)

= 4π
V0

(2π)3q
Im
[∫ ∞

0
dre(iq−κ)r

]
= 4π

V0

(2π)3
1

κ2 + q2

= 4π
V0

(2π)3
1

κ2 + k2 + k̃2 + 2kk̃ cos(θ̃)

Plugging this back to f (2),we have

f (2)(k,k) = − 1

4π

(
2m

h̄2

)2

(2π)3
∫
d3k̃

1

k2 − k̃2 + iε
| 〈k|V |k̃〉 |2

= −
1

4π

(
2m

h̄2

)2

(2π)3
∫
d3k̃

1

k2 − k̃2 + iε

(
4π

V0

(2π)3
1

κ2 + k2 + k̃2 + 2kk̃ cos(θ̃)

)2

= −4π
(
2m

h̄2

)2 V 2
0

(2π)3

∫
d3k̃

1

k2 − k̃2 + iε

(
1

κ2 + k2 + k̃2 + 2kk̃ cos(θ̃)

)2

= −4π
(
2m

h̄2

)2 V 2
0

(2π)3
2π

∫
d(cos θ̃)k̃2dk̃

1

k2 − k̃2 + iε

(
1

κ2 + k2 + k̃2 + 2kk̃ cos(θ̃)

)2

We can already integrate the cosine:∫ 1

−1
d(cos θ̃)

(
1

κ2 + k2 + k̃2 + 2kk̃ cos(θ̃)

)2

=
1

2kk̃

[
1

κ2 + k2 + k̃2 − 2kk̃
−

1

κ2 + k2 + k̃2 + 2kk̃

]

=
1

2kk̃

[
1

κ2 + (k − k̃)2
−

1

κ2 + (k + k̃)2

]

=
2

(κ2 + (k − k̃)2)(κ2 + (k + k̃)2)

23



So, our equation now is:

f (2)(k,k) = −4π
(
2m

h̄2

)2 V 2
0

(2π)3
4π

∫ ∞

0

k̃2dk̃

(k2 − k̃2 + iε)(κ2 + (k − k̃)2)(κ2 + (k + k̃)2)

III.1.6 [2 point(s)]

Identify all the poles of the integrand in the above result and integrate it over all k̃ to obtain

f (2)(k,k) =
(
2m

h̄2

)2
V 2
0

2κ2(κ− 2ik)
.

Solution

f (2)(k,k) = −4π
(
2m

h̄2

)2 V 2
0

(2π)3
4π

∫ ∞

0

k̃2dk̃

(k2 − k̃2 + iε)(κ2 + (k − k̃)2)(κ2 + (k + k̃)2)

= −4π
(
2m

h̄2

)2 V 2
0

(2π)3
4π

2

∫ ∞

−∞

k̃2dk̃

(k2 − k̃2 + iε)(κ2 + (k − k̃)2)(κ2 + (k + k̃)2)

Wehave symmetrically doubled the limits of the integral in the last step. We can do this, since the integrand is an even function
of the integration variable. The function has six poles in the complex plane:

Corresponding points are:

α1 = k + iκ

α2 = k − iκ
α3 = −k + iκ

α4 = −k − iκ

α5 =
√
k2 + iε

α6 = −
√
k2 + iε

Only half of these zeros (namely,α1, α3, α5) are on the upper part of the plane. We can integrate on the upper half-circle, having
a guarantee that the circular part gives zero after R → ∞, because the integrand goes as 1/k̃3 and becomes zero at very far
distances.
So, using the residue theorem,

f (2)(k,k) = −4π
(
2m

h̄2

)2 V 2
0

(2π)3
4π

2
[2iπ (Res (f, α1) + Res (f, α3) + Res (f, α5))]

= −4π
(
2m

h̄2

)2 V 2
0

(2π)3
4π

2

[
−

π

2κ2(κ− 2ik)

]
=

(
2m

h̄2

)2 V 2
0

2κ2(κ− 2ik)
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III.1.7 [1 point(s)]

The optical theorem relates the full cross-section to the imaginary part of the forward scattering amplitude.
State the optical theorem and check that it holds for the Yukawa potential (the first terms in powers of V0).
Why is the second Born approximation needed for this?

Solution

The optical theorem states:

Im [f(k,k)] = k

4π
σtot

=
k

4π

∫
dΩ

dσ

dΩ

=
k

4π

∫
dΩ
∣∣f(k′,k)∣∣2

The first born amplitude contains V0 linearly, the second one contains it squared and so on. If we need to check term by term,
we need to compare the imaginary part of the second amplitude to the total cross section calculated using the first one. In other
words,

Im
[
f (2)(k,k)

]
=

k

4π

∫
dΩ
∣∣∣f (1)(k′,k)∣∣∣2

=
k

4π

∫
dφ d(cos θ)

4m2

h̄4
V 2
0

(κ2 + 2k2 − 2k2 cos(θ))2

=
k

4π
4π

4m2

h̄4
V 2
0

κ2(κ2 + 4k2)

= k
4m2

h̄4
V 2
0

κ2(κ2 + 4k2)

Comparing this to the f (2) above, we see that the optical theorem is satisfied.
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III.2 The Higgs Mechanism (10 points)

Consider the following Lagrangian:

L = (DµΦ)†DµΦ− µ2Φ†Φ− λ(Φ†Φ)2

where

• Φ = 1√
2

(
φ1 + iφ2
φ3 + iφ4

)
is an SU(2) doublet;

• Dµ = ∂µ + ig τa

2 W
a
µ is the covariant derivative;

• τa denote the Pauli matrices (see the Appendix below), a = 1, 2, 3;

• W a
µ are vector bosons;

• g is a coupling constant.

III.2.1 [1 point(s)]

Under the local SU(2) transformations

Φ → eiα
a(x) τa

2 Φ,

the vector fields transform as

W a
µ →W a

µ − 1

g
∂µα

a(x)− εabcαb(x)W c
µ.

εabc is the totally-antisymmetric symbol with ε123 = 1.
Show that a mass term for the vector bosons breaks the gauge invariance of the Lagrangian.

Solution

Let’s consider a mass-term forWa
µ fields:

LMW
= −

Mab

2
Wa

µ (W
b)µ

The transformation will be:

LMW
→ −

Mab

2

(
Wa

µ −
1

g
∂µα

a(x)− εamnαm(x)Wn
µ

)(
(W b)µ −

1

g
∂µαb(x)− εbijαi(x)(W j)µ

)
= −

Mab

2
Wa

µ (W
b)µ +

Mab

2

(
Wa

µ

1

g
∂µαb +

1

g
∂µα

a(W b)µ +Wa
µ ε

bijαi(W j)µ + εamnαmWn
µ (W b)µ

)
= −

Mab

2
Wa

µ (W
b)µ +

Mab

2g
∂µα(aW

b)
µ +

Mab

2
W

(a
µ εb)ijαi(W j)µ

where (a, b) denote the symmetrization in indices a, b. We note, that the additional term has a structureMabS
ab, where Sab is

symmetric. The onlyway that this expression is identically zero, is whenMab is anti-symmetric. Butmassmatrices are defined
to be symmetric and positive definite. So, an anti-symmetricMab won’t do.
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III.2.2 [1 point(s)]

We assume λ > 0, so that the potential

V = µ2Φ†Φ+ λ(Φ†Φ)2

is bounded from below.

Which case describes a theory with spontaneous symmetry breaking: µ2 > 0 or µ2 < 0?

Solution

For the case that Φ is a complex number (or a real two-component matrix), the plots are:

where horizontal axes are either Φ∗ and Φ, or Φ1 and Φ2.
It’s clear that µ2 > 0 case does not break the symmetry, but µ2 < 0 case does.

III.2.3 [1 point(s)]

What conditions must the fields Φ,Φ† satisfy in order to minimize V ?

Solution

First of all, notice, that all components of Φ enter in the expression of V only as a product Φ†Φ. So, any condition will be
ultimately imposed on Φ†Φ.

V (Φ†Φ) = µ2Φ†Φ+ λ(Φ†Φ)2
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The condition of the minimum is

∂V

∂(Φ†Φ)

∣∣∣∣∣
min

= 0

µ2 + 2λΦ†Φ = 0

Φ†Φ =
−µ2

2λ

By definition, Φ =
1
√
2

(
φ1 + iφ2
φ3 + iφ4

)
So, φ21 + φ22 + φ23 + φ24 =

−µ2

λ
≡ v2

III.2.4 [1 point(s)]

For the ground state we choose

Φ0 =

(
0
v

)
.

In other words, we set φ1 = φ2 = φ3 = 0 and φ4 = v = const. Why are we allowed to do this? What is the value
for the constant v?

Solution

The result of the previous part gives that the fields φi satisfy the following constraint:

φ21 + φ22 + φ23 + φ24 =
−µ2

λ
≡ v2

i.e. they are located on a 3-sphere. We can choose any point for this 3-sphere as a ground state and expand the general fields
around it.
The constant v =

√
−µ2/λ. Note, that since µ2 < 0, v is real.

III.2.5 [1 point(s)]

We expand the fields around Φ0:

Φ = Φ0 +∆Φ =

(
0
v

)
+

(
∆φ1(x) + i∆φ2(x)
∆φ3(x) + i∆φ4(x)

)
=

(
∆φ1(x) + i∆φ2(x)

v +∆φ3(x) + i∆φ4(x)

)
Show that this is equivalent to the infinitesimal transformation

Φ =
1√
2
ei

θa(x)
v τa

(
0

v + h(x)

)
.

How are the fields∆φ1,∆φ2,∆φ3,∆φ4 given in terms of θ1, θ2, θ3, h?
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Solution

We consider infinitesimal fields, so

ei
θa(x)

v
τa
≈
(
1 + i

θa(x)

v
τa
)

=

(
1 + iθ3/v i(θ1 − iθ2)/v

i(θ1 + iθ2)/v 1− iθ3/v

)
Now,

1
√
2
ei

θa

v
τa
(

0
v + h

)
≈

1
√
2

(
1 + iθ3/v i(θ1 − iθ2)/v

i(θ1 + iθ2)/v 1− iθ3/v

)(
0

v + h

)
=

1
√
2

(
θ2 + iθ1 + (θ2 + iθ1)h/v
v + h− iθ3 − iθ3h/v

)
Small fields means that products θi(x)h(x) are also infinitesimally small, so finally,

Φ ≈
1
√
2

(
θ2(x) + iθ1(x)

v + h(x)− iθ3(x)

)
This is equivalent to the perturbation given above, with

∆φ1(x) = θ2(x), ∆φ2(x) = θ1(x), ∆φ3(x) = h(x), ∆φ4(x) = −θ3(x).

III.2.6 [1 point(s)]

Consider the kinetic part of the Lagrangian:

Lkin = (DµΦ)†(DµΦ)

Show that inserting

Φ =
1√
2
ei

θa(x)
v τa

(
0

v + h(x)

)
.

into Lkin gives

Lkin =
1

2
(∂µh) (∂µh) +

1

2
(∂µθ1) (∂µθ1) +

1

2
(∂µθ2) (∂µθ2) +

1

2
(∂µθ3) (∂µθ3)

+
g

2
W 1

µ (h∂µθ1 + v∂µθ1 − θ1∂
µh+ θ3∂

µθ2 − θ2∂
µθ3)

+
g

2
W 2

µ (h∂µθ2 + v∂µθ2 − θ2∂
µh+ θ1∂

µθ3 − θ3∂
µθ1)

+
g

2
W 3

µ (h∂µθ3 + v∂µθ3 − θ3∂
µh+ θ2∂

µθ1 − θ1∂
µθ2)

+
g2

8

((
W 1

µ

)2
+
(
W 2

µ

)2
+
(
W 3

µ

)2) (
v2 + 2vh+ h2 + θ21 + θ22 + θ23

)
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Solution

To calculate this, we’re going to need

DµΦ =

(
∂µ + ig

τa

2
Wa

µ

)
1
√
2

(
θ2(x) + iθ1(x)

v + h(x)− iθ3(x)

)
=

1
√
2

[(
∂µθ2(x) + i∂µθ1(x)
∂µh(x)− i∂µθ3(x)

)
+ ig

τa

2
Wa

µ

(
θ2(x) + iθ1(x)

v + h(x)− iθ3(x)

)]
=

1
√
2

[(
∂µθ2(x) + i∂µθ1(x)
∂µh(x)− i∂µθ3(x)

)
+
ig

2

(
W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ −W 3
µ

)(
θ2(x) + iθ1(x)

v + h(x)− iθ3(x)

)]
=

1
√
2

[(
∂µθ2(x) + i∂µθ1(x)
∂µh(x)− i∂µθ3(x)

)
+
ig

2

(
W 3

µ(iθ1(x) + θ2(x)) + (W 1
µ − iW 2

µ)(v + h(x) + iθ3(x))
(W 1

µ + iW 2
µ)(iθ1(x) + θ2(x))−W 3

µ(v + h(x) + iθ3(x))

)]
A bit too overwhelming... Let’s denote

1
√
2

(
θ2(x) + iθ1(x)

v + h(x)− iθ3(x)

)
≡

1
√
2

(
Φ1

Φ2

)
So,

DµΦ =
1
√
2

[(
∂µΦ1

∂µΦ2

)
+
ig

2

(
W 3

µΦ1 + (W 1
µ − iW 2

µ)Φ2

(W 1
µ + iW 2

µ)Φ1 −W 3
µΦ2

)]
=

1
√
2

(
(∂µ + ig

2
W 3

µ)Φ1 + ig
2
(W 1

µ − iW 2
µ)Φ2

(∂µ − ig
2
W 3

µ)Φ2 + ig
2
(W 1

µ + iW 2
µ)Φ1

)
redefine:−−−−−−−→

g
2
Wa

µ≡wa
µ

=
1
√
2

(
(∂µ + iw3

µ)Φ1 + (w2
µ + iw1

µ)Φ2

(∂µ − iw3
µ)Φ2 + (−w2

µ + iw1
µ)Φ1

)
Now, (

∂µ + iw3
µ

)
(θ2(x) + iθ1(x)) =

(
∂µθ2 − w3

µθ1
)
+ i
(
∂µθ1 + w3

µθ2
)(

w2
µ + iw1

µ

)
(v + h(x)− iθ3(x)) =

(
w2

µ(v + h) + w1
µθ3
)
+ i
(
w1

µ(v + h)− w2
µθ3
)(

∂µ − iw3
µ

)
(v + h(x)− iθ3(x)) =

(
∂µh− w3

µθ3
)
− i
(
∂µθ3 + w3

µ(v + h)
)(

−w2
µ + iw1

µ

)
(θ2(x) + iθ1(x)) = −

(
w2

µθ2 + w1
µθ1
)
+ i
(
w1

µθ2 − w2
µθ1
)

So, we can rewrite

DµΦ =
1
√
2

(
ξ1 + iξ2
ξ3 + iξ4

)
where

ξ1 = ∂µθ2 − w3
µθ1 + w2

µ(v + h) + w1
µθ3

ξ2 = ∂µθ1 + w3
µθ2 + w1

µ(v + h)− w2
µθ3

ξ3 = ∂µh− w3
µθ3 − w2

µθ2 − w1
µθ1

ξ4 = −∂µθ3 − w3
µ(v + h) + w1

µθ2 − w2
µθ1

And finally, (DµΦ)† (DµΦ) = (ξ21 + ξ22 + ξ23 + ξ24)/2, so,

Lkin =
1

2
(∂µh) (∂µh) +

1

2
(∂µθ1) (∂µθ1) +

1

2
(∂µθ2) (∂µθ2) +

1

2
(∂µθ3) (∂µθ3)

+ w1
µ (h∂µθ1 + v∂µθ1 − θ1∂µh+ θ3∂

µθ2 − θ2∂µθ3)

+ w2
µ (h∂µθ2 + v∂µθ2 − θ2∂µh+ θ1∂

µθ3 − θ3∂µθ1)

+ w3
µ (h∂µθ3 + v∂µθ3 − θ3∂µh+ θ2∂

µθ1 − θ1∂µθ2)

+
1

2

((
w1

µ

)2
+
(
w2

µ

)2
+
(
w3

µ

)2) (
v2 + 2vh+ h2 + θ21 + θ22 + θ23

)
In terms ofWa

µ :

Lkin =
1

2
(∂µh) (∂µh) +

1

2
(∂µθ1) (∂µθ1) +

1

2
(∂µθ2) (∂µθ2) +

1

2
(∂µθ3) (∂µθ3)

+
g

2
W 1

µ (h∂µθ1 + v∂µθ1 − θ1∂µh+ θ3∂
µθ2 − θ2∂µθ3)

+
g

2
W 2

µ (h∂µθ2 + v∂µθ2 − θ2∂µh+ θ1∂
µθ3 − θ3∂µθ1)

+
g

2
W 3

µ (h∂µθ3 + v∂µθ3 − θ3∂µh+ θ2∂
µθ1 − θ1∂µθ2)

+
g2

8

((
W 1

µ

)2
+
(
W 2

µ

)2
+
(
W 3

µ

)2) (
v2 + 2vh+ h2 + θ21 + θ22 + θ23

)
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III.2.7 [1 point(s)]

Consider the potential part of the Lagrangian:

V = µ2Φ†Φ+ λ(Φ†Φ)2 = −λv2Φ†Φ+ λ(Φ†Φ)2

Show that inserting

Φ =
1√
2
ei

θa(x)
v τa

(
0

v + h(x)

)
.

into V gives

V =
λ

4

(
h4 + 4h3v − v4 + 4hv(θ21 + θ22 + θ23) + (θ21 + θ22 + θ23)

2 + 4h2v2 + 2h2(θ21 + θ22 + θ23)
)
.

Solution

The product Φ†Φ is simply

Φ†Φ =
h2 + 2hv + v2 + θ21 + θ22 + θ23

2
So,

V (Φ†Φ) = λ

(
1

4

(
h2 + 2hv + v2 + θ21 + θ22 + θ23

)2 − v2

2

(
h2 + 2hv + v2 + θ21 + θ22 + θ23

))
It’s easy to see that because of theminus sign, all θ2i termswill cancel. Of course, h2 termwill also cancel, but there ismore: we
have a mixed 2hv term, which, after squaring, will become a term proportional to h2 and thus, h field will gain mass. Finally,

V (Φ†Φ) =
λ

4

(
h4 + 4h3v − v4 + 4hv(θ21 + θ22 + θ23) + (θ21 + θ22 + θ23)

2 + 4h2v2 + 2h2(θ21 + θ22 + θ23)
)

III.2.8 [1 point(s)]

Examine the whole resulting Lagrangian. How does the number of degrees of freedom compare to that of
the initial Lagrangian? What is the reason for this and how can it be resolved?

Solution

The whole Lagrangian can be written as

L =
1

2
(∂µh) (∂µh) +

1

2
(∂µθ1) (∂µθ1) +

1

2
(∂µθ2) (∂µθ2) +

1

2
(∂µθ3) (∂µθ3)

+
g

2
W 1

µ (h∂µθ1 + v∂µθ1 − θ1∂µh+ θ3∂
µθ2 − θ2∂µθ3)

+
g

2
W 2

µ (h∂µθ2 + v∂µθ2 − θ2∂µh+ θ1∂
µθ3 − θ3∂µθ1)

+
g

2
W 3

µ (h∂µθ3 + v∂µθ3 − θ3∂µh+ θ2∂
µθ1 − θ1∂µθ2)

+
g2

8

((
W 1

µ

)2
+
(
W 2

µ

)2
+
(
W 3

µ

)2) (
v2 + 2vh+ h2 + θ21 + θ22 + θ23

)
−
λ

4
h4 − λvh3 − λv2h2 +

λ

4
v4

− λ
(
hv +

h2

2

)
(θ21 + θ22 + θ23)

−
λ

4
(θ21 + θ22 + θ23)

2

At this point, Lagrangian seems to have more degrees of freedom than we started with: Gauge bosons Wa have now each
gained an extra polarization (massless vector bosons only have 2 polarizations, but massive ones have 3). So, we have 3 more
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(unphysical) degrees of freedom. The resolution lies within the SU(2) gauge freedom of Φ. In the next parts we will transform
Φ in such a way that the fields θ1,2,3 vanish.

III.2.9 [1 point(s)]

Use gauge freedom to eliminate the θ fields completely from the Lagrangian.

Solution

We have our main field Φwritten as

Φ =
1
√
2
ei

θa(x)
v

τa
(

0
v + h(x)

)
We also know, that Φ has an SU(2) gauge freedom, i.e. transformations

Φ→ ei
αa

2
τa

Φ

leave the Lagrangian invariant. If we use this transformation:

Φ→ ei
αa

2
τa 1
√
2
ei

θa(x)
v

τa
(

0
v + h(x)

)
andchooseαa = −2θa/v (remember, gauge transformations are local, soαa is a functionofx, just like θa), thatwould transform
Φ into

Φ→
1
√
2

(
0

v + h(x)

)
Consequently, we will have no θ fields in the Lagrangian.

III.2.10 [1 point(s)]

What are themasses of the vector bosons after the elimination of the θ fields? Howmany degrees of freedom
does the resulting Lagrangian have?

Solution

Eliminating the θ fields, we’re left with

L =
1

2
(∂µh) (∂µh)−

λ

4
h4 − λvh3 − λv2h2 +

λ

4
v4

+
g2

8

((
W 1

µ

)2
+
(
W 2

µ

)2
+
(
W 3

µ

)2) (
v2 + 2vh+ h2

)
Here we can already see mass terms for gauge bosonsWa

µ :

LMW
=
g2v2

8

(
W 1

µ

)2
+
g2v2

8

(
W 2

µ

)2
+
g2v2

8

(
W 3

µ

)2
withMW = gv/2.
As for the scalar field,

Lmh = −λv2h2

withmh =
√
2λv.

As for the degrees of freedom, since three scalar fields θ disappeared, the three additional degrees of freedom are no more
present (degrees of freedom for the scalar fields have been ”transferred” to the longitudinal polarizations ofW gauge bosons).

Appendix

Pauli matrices:
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τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.
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III.3 Electron-Positron to Pions (10 points)

Part 1: Kinematics

m1

m2

m′
1

m′
2

p1

p2

q1

q2

For a 2 → 2 process of spinless particles with initial momenta p1, p2 and final momenta q1, q2, the amplitude
can depend only on the scalar products:

p21, p
2
2, q

2
1 , q

2
2 , p1 · p2, p1 · q1, p1 · q2, p2 · q1, p2 · q2, q1 · q2.

III.3.1 [1 point(s)]

Give arguments why only 2 of these 10 scalars are independent. Where do the constraints come from?

Solution

The first 4 are constrained by the mass-shell conditions:

p2i = m2
i , q2i = m′2

i , i = 1, 2.

Energy-momentum conservation gives 4 additional constraints:

pµ1 + pµ2 = qµ1 + qµ2 , µ = 0, 1, 2, 3.

This fixes 8 out of 10 variables and therefore leaves 2 of them independent.
Alternatively, one can define three scalar quantities called the Mandelstam variables:

s = (p1 + p2)
2 = (q1 + q2)

2,

t = (p1 − q1)2 = (p2 − q2)2,

u = (p1 − q2)2 = (p2 − q1)2.

As discussed above, only two of these variables can be linearly independent. In fact, it can be shown that s, t and u satisfy

s+ t+ u = m2
1 +m2

2 +m′2
1 +m′2

2 .

III.3.2 [1 point(s)]

The n-particle phase space is defined as

dΦn = δ(4)

∑
i

pi −
∑
j

qj

 n∏
j=1

d3qj
(2π)32E~qj

,

The differential cross section for a 2 → 2 process is

dσm1m2→m′
1m

′
2
=

(2π)4 |〈q1, q2|t|p1, p2〉|2

4
√
(p1 · p2)2 −m2

1m
2
2

dΦ2
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Show that the full cross section is then

σm1m2→m′
1m

′
2
=

1

64π2

√
λ(s,m′2

1 ,m
′2
2 )√

λ(s,m2
1,m

2
2)

1

s

∫
|tfi|2

S
dΩ~q

where S is the symmetry factor and λ is the Källén function, defined as

λ
(
s,m2

1,m
2
2

)
=
(
s− (m1 +m2)

2
) (
s− (m1 −m2)

2
)
.

tfi is the invariant amplitude of the process (the indices i and f stand for initial and final states, respectfully).

Solution

The differential cross section for a 2→ 2 process is

dσm1m2→m′
1m

′
2
=

(2π)4 |〈q1, q2|t|p1, p2〉|2

4
√

(p1 · p2)2 −m2
1m

2
2

dΦ2,

where initial and final states are denoted by |p1, p2〉 and |q1, q2〉, andm1,2 are the masses of the particles in the initial state. Of
course, they need not to be the same in the final state. We will denote final state masses withm′

1,2. Using the definition of dΦ2,
we get for a two-body phase space

σm1m2→m′
1m

′
2
=

∫
(2π)4δ(4)(p1 + p2 − q1 − q2)

4
√

(p1 · p2)2 −m2
1m

2
2

∣∣tfi∣∣2
S

d3q1

(2π)32E~q1

d3q2

(2π)32E~q2

CM Frame−−−−−−→ =
1

16π2

∫
δ(
√
s− E~q1 − E~q2 )δ

(3)(~q1 + ~q2)

4
√

(p1 · p2)2 −m2
1m

2
2

∣∣tfi∣∣2
S

d3q1

E~q1

d3q2

E~q2

=
1

16π2

∫ δ(
√
s− Em′

1,~q1
− Em′

2,−~q1
)

4
√

(p1 · p2)2 −m2
1m

2
2

∣∣tfi∣∣2
S

d3q1

Em′
1,~q1

Em′
2,−~q1

Em,~q1
=Em,−~q1

≡Em,~q−−−−−−−−−−−−−−−−→ =
1

16π2S

∫ δ(
√
s− Em′

1,~q
− Em′

2,~q
)

4
√

(p1 · p2)2 −m2
1m

2
2

∣∣tfi∣∣2 d3q
Em′

1,~q
Em′

2,~q

=
1

16π2

∫ δ(
√
s−

√
m2

1 + ~q2 −
√
m2

2 + ~q2)

4
√

(p1 · p2)2 −m2
1m

2
2

∣∣tfi∣∣2
S

~q2d|~q|dΩ~q√
m2

1 + ~q2
√
m2

1 + ~q2

=
1

16π2S

√
λ(s,m′2

1 ,m
′2
2 )

2s

1

4
√

(p1 · p2)2 −m2
1m

2
2

∫ ∣∣tfi∣∣2 dΩ~q ,

In the CM frame, where ~p1 = −~p2 ≡ ~p, the Källén function gives the solution of
√
s =

√
m1 + ~p 2 +

√
m2 + ~p 2,

=⇒ ~p 2 =
λ(s,m2

1,m
2
2)

4s
=

(
s− (m1 +m2)2

) (
s− (m1 −m2)2

)
4s

.

The flux factor in the denominator is given by

4
√

(p1 · p2)2 −m2
1m

2
2 = 4

√
s|~p| = 2

√
λ(s,m2

1,m
2
2).

Therefore,

σm1m2→m′
1m

′
2
=

1

64π2

√
λ(s,m′2

1 ,m
′2
2 )√

λ(s,m2
1,m

2
2)

1

s

∫ ∣∣tfi∣∣2
S

dΩ~q .

Part 2: e+e− → π+π−

We consider the process e+e− → π+π−, described by the following diagram:
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e+

e−

FV

π+

π−

p1

p2

q1

q2

We define the Mandelstam variables as follows:

s = (p1 + p2)
2 = (q1 + q2)

2,

t = (p1 − q1)
2 = (p2 − q2)

2,

u = (p1 − q2)
2 = (p2 − q1)

2.

Apart from that, let us define

k = p1 + p2 = q1 + q2,

l = p1 − p2, l′ = q1 − q2.

III.3.3 [1 point(s)]

Give the expression for the leptonic current Lµ (left side of the diagram above) using the Feynman rules for
QED.

Solution

The leptonic current is
Lµ = v̄s(p1)(−ieγµ)ur(p2)

III.3.4 [1 point(s)]

The hadronic currentHµ (right side of the diagram above) can be written as

Hµ = (q1 + q2)
µGV (s) + (q1 − q2)

µFV (s).

Argue, whyGV (s) can be safely neglected here.

Solution

The leptonic current is transverse to p1+p2 = k = q1+q2. Consequently, the part of the hadronic currentwhich is proportional
to kµ vanishes after contraction.

III.3.5 [1 point(s)]

Give the expression for the invariant amplitudeM for the process.
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Solution

iM = v̄s(p1)(−ieγµ)ur(p2)
−igµν

(p1 + p2)2
(ie)(q1 − q2)νFV (s)

= −i
e2

s
v̄s(p1)γ

µur(p2)l
′
µFV (s).

III.3.6 [1 point(s)]

Square the invariant amplitude, average out over all initial spins and sum over all final ones. Give the final
result for the spin-averaged invariant matrix element squared |M|2.

Solution

Taking the absolute value squared,

|M|2 =

(
e2

s

)2

(v̄s(p1)γ
µur(p2))

∗ (v̄s(p1)γ
νur(p2)) l

′
µl

′
ν |FV (s)|2

=

(
e2

s

)2

(ūr(p2)γ
µvs(p1)) (v̄

s(p1)γ
νur(p2)) l

′
µl

′
ν |FV (s)|2.

Averaging over all initial spin states,

|M|2 =
1

4

∑
s,r

(
e2

s

)2

(ūr(p2)γ
µvs(p1)) (v̄

s(p1)γ
νur(p2)) l

′
µl

′
ν |FV (s)|2

=
1

4

∑
s,r

(
e2

s

)2 (
ūrα(p2)γ

µ
αβv

s
β(p1)

) (
v̄sρ(p1)γ

ν
ρσu

r
σ(p2)

)
l′µl

′
ν |FV (s)|2

=
1

4

∑
s,r

(
e2

s

)2 (
vsβ(p1)v̄

s
ρ(p1)u

r
σ(p2)ū

r
α(p2)γ

µ
αβγ

ν
ρσ

)
l′µl

′
ν |FV (s)|2

=
1

4

(
e2

s

)2 ((
/p1 −me

)
βρ

(
/p2 +me

)
σα

γµαβγ
ν
ρσ

)
l′µl

′
ν |FV (s)|2

=
1

4

(
e2

s

)2

tr
(
γµ
(
/p1 −me

)
γν
(
/p2 +me

))
l′µl

′
ν |FV (s)|2.

III.3.7 [1 point(s)]

Calculate the following trace
1

4
tr
(
γµ
(
/p1 −me

)
γν
(
/p2 +me

))
Hint

/A = γµAµ.
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Solution

1

4
tr
(
γµ
(
/p1 −me

)
γν
(
/p2 +me

))
=

(
pµ1 p

ν
2 + pν1p

µ
2 −

k2

2
gµν

)
=

(
(k + l)µ(k − l)ν

4
+

(k + l)ν(k − l)µ

4
−
k2

2
gµν

)
=

(
kµkν

2
−
lµlν

2
−
k2

2
gµν

)
= −

1

2

( (
k2gµν − kµkν

)
+ (lµlν)

)
.

III.3.8 [1 point(s)]

Express |M|2 in terms of theMandelstam variable s, the scattering angle θs, and the Källén function λ, where

cos(θs) =
t− u

κ(s)
,

κ(s) =
λ1/2(s,m2

π,m
2
π)λ

1/2(s,m2
e,m

2
e)

s
,

λ
(
s,m2

1,m
2
2

)
=
(
s− (m1 +m2)

2
) (
s− (m1 −m2)

2
)

Solution

Using the resulting trace from above:

|M|2 = −
1

2

(
e2

s

)2 ( (
k2gµν − kµkν

)
+ (lµlν)

)
l′µl

′
ν |FV (s)|2

= −
1

2

(
e2

s

)2 (
s
(
l′
)2

+
(
l · l′

)2 )|FV (s)|2

= −
1

2

(
e2

s

)2 (
s
(
4m2

π − s
)
+ (t− u)2

)
|FV (s)|2

= +
1

2

(
e2

s

)2 (
s
(
s− 4m2

π

)︸ ︷︷ ︸
λ(s,m2

π,m2
π)

−κ2(s) cos2(θs)
)
|FV (s)|2.

Finally,

|M|2 =
1

2

(
e2

s

)2 (
λ(s,m2

π ,m
2
π)− λ(s,m2

π ,m
2
π)λ(s,m

2
e,m

2
e)

1

s2
cos2(θs)

)
|FV (s)|2

=
1

2

(
e2

s

)2

λ(s,m2
π ,m

2
π)

(
1−

λ(s,m2
e,m

2
e)

s2
cos2(θs)

)
|FV (s)|2.

III.3.9 [1 point(s)]

Integrate |M|2 over the solid angle to obtain
∫
|M|2dΩ.
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Solution

∫
|M|2dΩ = (2π)

∫ +1

−1

(
e2

s

)2

λ(s,m2
π ,m

2
π)

1

2

(
1−

λ(s,m2
e,m

2
e)

s2
cos2(θs)

)
|FV (s)|2d cos(θs)

=
2πe4

s2
λ(s,m2

π ,m
2
π)

(
1−

1

3

λ(s,m2
e,m

2
e)

s2

)
︸ ︷︷ ︸

=2/3 forme�s

|FV (s)|2.

III.3.10 [1 point(s)]

Calculate the total cross section σe+e−→π+π− .

Hint

Youmay use the limitm2
e � s.

Solution

Using the expression for a 2-by-2 cross-section, one obtains

σe+e−→π+π− =
1

64π2

λ1/2(s,m2
π ,m

2
π)

λ1/2(s,m2
e,m

2
e)

1

s

∫
|M|2dΩ

=
2πe4

64π2s3
λ3/2(s,m2

π ,m
2
π)

λ1/2(s,m2
e,m

2
e)

(
1−

1

3

λ(s,m2
e,m

2
e)

s2

)
|FV (s)|2

m2
e�s

−−−−−−→
α=e2/4π

=
32π3α2

64π2s3
λ3/2(s,m2

π ,m
2
π)

s

(
1−

1

3

)
|FV (s)|2

=
πα2

3

λ3/2(s,m2
π ,m

2
π)

s4
|FV (s)|2.
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IV Other

IV.1 Breaking Classical Mechanics (5 points)

Construction of Quantum mechanics from Classical mechanics usually begins with a process known as
Quantization. This is usually done by constructing a map which takes observables to operators, that is:

{f, g} → − i

h̄
[f̂ , ĝ]

Where {−,−} is the Poisson bracket and [−,−] is the commutator. One of the common properties of these
brackets is that they form a Lie algebra, that is, they satisfy the following properties:

1. The bracket [−,−] is billinear.

2. For any f, g we have [f, g] = −[g, f ]

3. The bracket satisfies Jacobi identity, that is, for any f, g, hwe have:

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0

IV.1.1 [5 point(s)]

Suppose that we have a ”broken” classical mechanics in 3 dimensions, where {−,−} doesn’t satisfy the Ja-
cobi identity. Prove that the resulting quantummechanicswould violateHeisenberg’s uncertainty principle.

Solution

{f, g} = ω(Xf , Xg)

it is easy to show that if {−,−} doesn’t satisfy Jacobi identity, then ω is not closed (which is possible since ω is not a top form),
and thus is not symplectic. Hence, we can choose a Hamiltonian vector field: X ∈ Ham(M,ω) s.t. we have:

LXω = ιXdω + dιXω = ιXdω 6= 0

Then, for volume formwe obtain volM = ωn where n is s.t. dimM = 2n = 6, hence, we see that LXvolM 6= 0. Taking a volume
element U ⊂M s.t. it is of minimal volume: Vol(U) = (h̄/2)3, and letting gt = exp(tX), we obtain:

d

dt
Vol(gtU) =

d

dt

∫
U
gt∗LXω3 6= 0

that there exists an appropriate choice forX ∈ Ham(M,ω) s.t.:

d

dt
Vol(gtU) < 0

is trivial. Hence, there exists time t > 0 s.t.

Vol(gtU) < h̄3/8

which is less than the minimum volume, thus violating the Heisenberg’s uncertainty principle.
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IV.2 The Green’s Function (5 points)

Consider the Green’s function in three dimensions:

G(~x) = − e
ik|~x|

4π|~x|
.

IV.2.1 [2 point(s)]

Show (∆ + k2)G(~x) = 0 for ~x 6= 0, where∆ is the Laplace operator.

Solution

The radial part of the Laplacian in spherical coordinates (here |~x| ≡ r) is written as

∆r =
1

r2
∂

∂r
r2

∂

∂r
.

Consequently,

(∆ + k2)G(~x) = −
(

1

r2
∂

∂r
r2

∂

∂r
+ k2

)
eikr

4πr

= −
(

1

r2
∂

∂r
r2
(
ikeikr

4πr
−
eikr

4πr2

)
+ k2

eikr

4πr

)
= −

(
1

r2
∂

∂r

(
ikreikr

4π
−
eikr

4π

)
+ k2

eikr

4πr

)
= −

(
1

r2

(
ikeikr

4π
−
k2reikr

4π

)
−

1

r2
ikeikr

4π
+ k2

eikr

4πr

)
= 0

IV.2.2 [3 point(s)]

Show thatG(~x) satisfies the inhomogeneous differential equation

(∆ + k2)G(~x) = δ(3)(~x).

Hint

Consider the integral ∫
|~x|≤1

d3x(∆ + k2)G(~x).
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Solution

Let us consider the integral.∫
|~x|≤1

d3x(∆ + k2)G(~x) = −
∫
|~x|≤1

d3x

(
~∇
(
~∇
eikr

4πr

)
+ k2

eikr

4πr

)
Stokes’ theorem−−−−−−−−−−→ = −

∫
|~x|≤1

d~S

(
~∇
eikr

4πr

)
−
∫ 1

0
r2dr k2

eikr

r

= −
∫
|~x|≤1

d~S
d

dr

(
eikr

4πr

)
(~∇r)︸ ︷︷ ︸
~x/r

−k2
∫ 1

0
rdr eikr

= −
∫
|~x|≤1

d~S
~x

r︸ ︷︷ ︸
dΩ

d

dr

(
eikr

4πr

)
− k2

∫ 1

0
rdr eikr

r=1 at the−−−−−−→
boundary

= −
∫
|~x|≤1

dΩ

(
ikeik

4π
−
eik

4π

)
− k2

(
reikr

ik

∣∣∣1
0
−
∫ 1

0
dr
eikr

ik

)
∫
dΩ=4π
−−−−−−→ = −

(
ikeik − eik − ikeik + eik − 1

)
= 1

=

∫
|~x|≤1

d3x δ(3)(~x)
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IV.3 Point groupD6 (5 points)

Figure 4: A molecule withD6 symmetry. Credits: Wikipedia.

Consider the dihedral groupD6 = 〈b, c | b2 = c6 = (bc)2 = e〉, which is the symmetry group for an unoriented
hexagon.

IV.3.1 [1 point(s)]

D6 has 6 conjugacy classes. One element per class is given below:

C`1 = {e, . . . } ,
C`2 = {c, . . . } ,
C`3 =

{
c2, . . .

}
,

C`4 =
{
c3, . . .

}
,

C`5 = {b, . . . } ,
C`6 = {bc, . . . } .

Complete the classes by adding corresponding elements within. Showwhy a specific element should belong
to a specific class.

Hint

Not all {. . . } are meant to be filled.

Solution

C`1 and C`4 contain single elements each, because e and c3 compose the center of the group.
Using c−nb = bcn, we can show that b is conjugated with bc2 and c2b:

c−1(b)c = bc2,

c−2(b)c2 = bc4.

Similarly,

c−1(bc)c = bc3,

c−2(bc)c2 = bc5.
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As for the other classes, c2 is conjugated with c4 by b (and the same holds for c and c5:

b(c2)b = bbc−2 = c−2 = c4

b(c)b = bbc−1 = c−1 = c5

With this, the complete list of classes is

C`1 = {e} , C`2 =
{
c, c5

}
, C`3 =

{
c2, c4

}
,

C`4 =
{
c3
}
, C`5 =

{
b, bc2, bc4

}
, C`6 =

{
bc, bc3, bc5

}
.

IV.3.2 [2 point(s)]

Let ν = 1, . . . , 6 enumerate irreducible representations ofD6 and dν denote the dimension of the representa-
tion. We consider a 6-dimensional representation D(7). The characters for the irreducible representations
are given in Table 1. Fill the table by calculating the characters forD(7).

D(ν) dν C`1 C`2 C`3 C`4 C`5 C`6
D(1) 1 1 1 1 1 1 1
D(2) 1 1 -1 1 -1 -1 1
D(3) 1 1 -1 1 -1 1 -1
D(4) 1 1 1 1 1 -1 -1
D(5) 2 2 1 -1 -2 0 0
D(6) 2 2 -1 -1 2 0 0
D(7) 6 … … … … … …

Table 1: Character table forD6.

Hint

Don’t get confused by the notation: D6 stands for the dihedral group. D(ν) stand for specific representations.

Solution

Since every element within a class has the same character, it’s sufficient to calculate the trace of a single element per class.
One way to do this is to actually look at the matrix forms of the elements. For the identity and the generators we have:

D(7)(e) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , D(7)(b) =


0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

 , D(7)(c) =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 .

So,

χ7(C`1) = tr(D(7)(e)) = 6,

χ7(C`5) = tr(D(7)(b)) = 2,

χ7(C`2) = tr(D(7)(c)) = 0.

Using the matrix forms above, c2, bc and bc2 can be constructed to show

χ7(C`3) = tr(D(7)(c2)) = 0,

χ7(C`4) = tr(D(7)(bc)) = 0,

χ7(C`6) = tr(D(7)(bc2)) = 0.
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IV.3.3 [1 point(s)]

Using the characters derived in the previous section, decomposeD(7) into irreducible representations.

Solution

The multiplicity qν of an irreducible representationD(ν) withinD(7) is given by

qν =
1

|D6|

6∑
i=1

Ni (χ
ν(C`i))∗ χ7(C`i),

whereNi is the number of elements in class i and χν(C`i) is the character of the class i within representationD(ν). Using the
table, we obtain

q1 = 1, q2 = 0, q3 = 1, q4 = 0, q5 = 1, q6 = 1.

Finally, we can write

D(7) = D(1) ⊕D(3) ⊕D(5) ⊕D(6).

IV.3.4 [1 point(s)]

Consider a molecule with D6 symmetry, which transforms under D(7) (an example is given on Figure 4).
What can you deduce about the energy levels (and their degeneracies) of this molecule, judging from the
decomposition ofD(7)?

Solution

Since D(7) decomposes into 4 irreducible representations, we expect four different energy levels, with two of them doubly
degenerate (since two irrepshavedimension2). The trivial representation is expected to correspond to the ground state (lowest
energy level).
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IV.4 Dirac Equation: Angular Momentum and Parity (5 points)

The Dirac equation for spin-1/2 particles is written as

i∂tψ = Ĥψ,

where

Ĥ := αi (p̂i − qAi) + βm+ IqΦ.

Here αi =

(
0 σi

σi 0

)
and β =

(
I 0
0 −I

)
.

We assume that the electric field is time-independent and rotationally invariant:

V (x) := qΦ = V (r).

We take the vector potential to be vanishing: Ai = 0. This simplifies the Hamiltonian to

Ĥ = αip̂i + βm+ IV

We combine the angular momentum and the spin operators

L̂i = εijkx̂j p̂k

Si =
1

2

(
σi 0
0 σi

)

to obtain the total angular momentum operator

Ĵi = IL̂i + Si.

IV.4.1 [1 point(s)]

Show that the commutation relations for Ĵ are[
Ĵi, Ĵj

]
= iεijkĴk,

[
Ĵi, Ĵ

2
]
= 0

Solution

First of all, let’s take a look at the commutation relations for L̂ and S separately,[
L̂i, L̂j

]
= iεijkL̂k

[Si, Sj ] = iεijkSk

Both these relations result from the definitions of L̂, S. Also, it’s clear that these two operators commute, since they act on
different spaces. So, [

Ĵi, Ĵj

]
= I

[
L̂i, L̂j

]
+ [Si, Sj ]

= iεijkIL̂k + iεijkSk = iεijkĴk
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As for the casimir operator, [
Ĵi, Ĵj Ĵj

]
= Ĵj

[
Ĵi, Ĵj

]
+
[
Ĵi, Ĵj

]
Ĵj

= iεijk

(
Ĵj Ĵk + ĴkĴj

)
= 0

This is zero, because εijk is totally antisymmetric and multiplying it on a symmetric object gives zero.

IV.4.2 [2 point(s)]

Show that Ĵi and Ĵ2 commute with the given Hamiltonian:[
Ĥ, Ĵi

]
= 0,

[
Ĥ, Ĵ2

]
= 0.

Solution

By construction of our Hamiltonian, [
Ĥ, Ĵk

]
=
[
αip̂i + βm+ IV, Ĵk

]
=
[
αip̂i, Ĵk

]
+
[
βm, Ĵk

]
+
[
IV, Ĵk

]
=
[
αip̂i, Ĵk

]
+
[
βm, Ĵk

]
The third part disappeared because unity commutes with everything.
We calculate the rest separately, [

αip̂i, Ĵk

]
=
[
αip̂i, IL̂k + Sk

]
= αi

[
p̂i, L̂k

]
+
[
αi, Sk

]
p̂i

[
p̂i, L̂k

]
= [p̂i, εkmnx̂mp̂n]

= εkmn [p̂i, x̂m] p̂n

= εkmn(−iδim)p̂n

= −iεkinp̂n

[
αi, Sk

]
=

1

2

[(
0 σi

σi 0

)
,

(
σk 0
0 σk

)]
=

1

2

(
0 σiσk − σkσi

σiσk − σkσi 0

)
=

1

2

(
0 iεiknσ

n

iεiknσ
n 0

)
= iεiknα

n

So, finally, [
αip̂i, Ĵk

]
= αi

[
p̂i, L̂k

]
+
[
αi, Sk

]
p̂i

= −iαiεkinp̂n + iεiknα
np̂i = 0

As for the second term, [
βm, Ĵk

]
=
[
βm, IL̂k + Sk

]
= [βm, Sk]

=
m

2

[(
I 0
0 −I

)
,

(
σk 0
0 σk

)]
= 0

So, in all, Ĵk commutes with the Hamiltonian:
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[
Ĥ, Ĵk

]
= 0

As for the square operator, [
Ĥ, ĴkĴk

]
= Ĵk

[
Ĥ, Ĵk

]
+
[
Ĥ, Ĵk

]
Ĵk = 0

IV.4.3 [2 point(s)]

Parity operator for spinors is defined as P̂s := βP̂ and acts as

P̂sψ(t,x) = βψ(t,−x)

Show that this operator commutes with Ĥ , Ĵi, and Ĵ2.

Solution

Hamiltonian and the angular momentum operators are built by the following set of operators:{
Ix̂i, Ip̂i, IL̂i, Si

}
So, we check the commutations with these operators first:[

Ix̂i, P̂s

]
ψ(t, x) = x̂iP̂sψ(t, x)− P̂sx̂iψ(t, x)

= x̂iβP̂ψ(t, x)− βP̂ x̂iψ(t, x)
= x̂iβψ(t,−x)− β(−x̂iψ(t,−x))
= x̂iβψ(t,−x) + βx̂iψ(t,−x)
= 2x̂iβψ(t,−x)

= 2x̂iP̂sψ(t, x)[
Ix̂i, P̂s

]
= 2x̂iP̂s{

Ix̂i, P̂s

}
= 0

Similarly, p̂i, being component of a non-axial vector, will also change sign under P̂ and the results will be the same:[
Ip̂i, P̂s

]
= 2p̂iP̂s{

Ip̂i, P̂s

}
= 0

Conversely, L̂i is a component of an axial vector. It consists of both x̂i and p̂i. So, it will not change direction.[
IL̂i, P̂s

]
ψ(t, x) = L̂iP̂sψ(t, x)− P̂sL̂iψ(t, x)

= L̂iβP̂ψ(t, x)− βP̂ L̂iψ(t, x)

= L̂iβψ(t,−x)− βL̂iψ(t,−x)
= 0[

IL̂i, P̂s

]
= 0{

IL̂i, P̂s

}
= 2L̂iP̂s

The spin operator Si does not have any spatial components and it commutes with the βmatrix. So, consequentially,[
Si, P̂s

]
ψ(t, x) = SiP̂sψ(t, x)− P̂sSiψ(t, x)

= SiβP̂ψ(t, x)− βP̂Siψ(t, x)
= Siβψ(t,−x)− βSiψ(t,−x)
= 0[

Si, P̂s

]
= 0{

Si, P̂s

}
= 2SiP̂s
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These two alone suffice to deduce that
[
Ĵi, P̂s

]
= 0, and consequently,

[
Ĵ2, P̂s

]
= 0.

As for the Hamiltonian, [
Ĥ, P̂s

]
=
[
αip̂i + βm+ IV, P̂s

]
=
[
αip̂i, P̂s

]
= αi

[
p̂i, P̂s

]
+
[
αi, P̂s

]
p̂i

= 2αip̂iP̂s +
[
αi, P̂s

]
p̂i

= 2αip̂iP̂s +
(
αiβP̂ − βαiP̂

)
p̂i

= 2αip̂iP̂s +
(
αiβP̂ + αiβP̂

)
p̂i

= 2αip̂iP̂s + 2αiβP̂ p̂i

= 2αi
{
p̂i, P̂s

}
= 0
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IV.5 Transverse Magnetic Susceptibility of an Isotropic Ferromagnet (5 points)

In an isotropic ferromagnet, the ground state with all the spins polarized in the same direction is infinitely
degenerate. The ground state manifold represents a sphere whose points correspond to possible directions
of the spontaneous magnetization

~M = N−1
N∑
i=1

〈~Si〉 .

In an external magnetic field ~h0 the magnetization ~M will be aligned along ~h0. A small transverse magnetic
field ~h⊥ (with ~h⊥ · ~h0 = 0) will slightly change the direction of ~M .

IV.5.1 [3 point(s)]

Calculate the transverse magnetic susceptibility of the ferromagnet

χ⊥(h0) = lim
h⊥→0

∂M(h0;h⊥)

∂h⊥
.

Solution

The magnetization in the ground state manifold only differs by the direction and the amplitude is fixed, thus |M | = |M ′| =
const. Since |~h⊥| � |~h0|, then ∆ ~M can also be regarded as perpendicular to ~M . This way, due to the similarity of triangles
given in the figure above, we have

|∆M |
|h⊥|

=
|M ′|
|h|

=
|M |√
h20 + h2⊥

~M ′(~h0,~h⊥) = ~M +∆ ~M(~h0,~h⊥)

In it’s ground state:
~M = max

all spin configurations
{|M |}ẑ

.

χ
∣∣
h⊥=0

=
∂∆M(~h0,~h⊥)

∂h⊥

∣∣∣∣∣
h⊥=0

= |M |
∂

∂h⊥

(
h⊥√
h20 + h2⊥

)∣∣∣∣∣
h⊥=0

=
|M |
|h0|
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IV.5.2 [2 point(s)]

What is the property of χ⊥ in the limit h0 = 0? Explain the result.

Solution

The transverse magnetic susceptibility diverges in the limit h0 = 0, since in this limit the rotational symmetry of the problem
is completely recovered and the system becomes extremely sensitive to arbitrarily small magnetic field.
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IV.6 Gaussian Integrals (5 points)

IV.6.1 [2 point(s)]

LetA be a real, symmetric, positive definite matrix. Show the following identity for multi-dimensional inte-
grals over real variables xi:

∫ n∏
i=1

dxi exp
(
−1

2
xkAklxl + Jkxk

)
=

(2π)n/2√
detA

exp
(
1

2
JkA

−1
jl Jl

)
.

Solution

Introduce notation

x = (x1, . . . , xn)

y = (y1, . . . , yn)

J = (J1, . . . , Jn)

In this notation, our identity looks like this:∫ n∏
i=1

dxi exp
(
−
1

2
xTAx+ JT x

)
=

(2π)n/2

√
detA

exp
(
1

2
JTA−1J

)
Since A is symmetric, we can diagonalize it using orthogonal matrices. And because of the fact that it’s positive definite, this
orthogonal matrix will have determinant 1. Since orthogonal matrices satisfyOTO = In, we can write

A = OTADO

First, let’s set J = 0, so we’re calculating∫ n∏
i=1

dxi exp
(
−
1

2
xTAx

)
=

∫ n∏
i=1

dxi exp
(
−
1

2
xTOTADOx

)
y≡Ox−−−−→ =

∫ n∏
i=1

dxi exp
(
−
1

2
yTADy

)
det(O)=1−−−−−−→ =

∫ n∏
i=1

dyi exp
(
−
1

2
yTADy

)

=

∫ n∏
i=1

dyi exp
(
−
1

2

n∑
i=1

λiy
2
i

)

=

∫
dy1 exp

(
−
1

2
λ1y

2
1

)
· · ·
∫
dyn exp

(
−
1

2
λny

2
n

)

=

√
2π

λ1
· · ·

√
2π

λn
=

(2π)n/2

√
λ1 · · ·λ2

=
(2π)n/2

√
detA
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Now, let’s put J back on: ∫ n∏
i=1

dxi exp
(
−
1

2
xTAx+ JT x

)
=

x≡y+b−−−−−−→
dxi=dyi

=

∫ n∏
i=1

dyi exp
(
−
1

2
(yT + bT )A(y + b) + JT (y + b)

)

=

∫ n∏
i=1

dyi exp
(
−
1

2
yTAy −

1

2
bTAy −

1

2
yTAb−

1

2
bTAb+ JT y + JT b

)
AT=A−−−−−→=

∫ n∏
i=1

dyi exp
(
−
1

2
yTAy − bTAy −

1

2
bTAb+ JT y + JT b

)

=

∫ n∏
i=1

dyi exp
(
−
1

2
yTAy − (bTA− JT )y −

1

2
bTAb+ JT b

)
bTA

!
=JT

−−−−−−−−−−−−→
by setting b=A−1J

=

∫ n∏
i=1

dyi exp
(
−
1

2
yTAy −

1

2
bTAb+ bTAb

)

=

∫ n∏
i=1

dyi exp
(
−
1

2
yTAy

)
exp

(
+
1

2
bTAb

)

=
(2π)n/2

√
detA

exp
(
+
1

2
bTAb

)
b=A−1J−−−−−−→=

(2π)n/2

√
detA

exp
(
+
1

2
JTA−1J

)

IV.6.2 [3 point(s)]

Show that for complex variables zi, the previous result can be generalized as follows:

∫ n∏
i=1

dz∗i dzi exp (−z∗kHklzl + J∗
kzk + Jkz

∗
k) =

(2πi)n

detH
exp

(
J∗
kH

−1
kl Jl

)
whereH is now hermitian, positive definite matrix.

Solution

As before, let’s start with J = 0 case.
Since H is hermitian, it can be diagonalized using unitary matrices, which satisfy U†U = In. Since it’s also positive definite,
there is a special unitary matrix (i.e. with determinant 1) that satisfies this:

H = U†HDU

So, ∫ n∏
i=1

dz∗i dzi exp
(
−z†Hz

)
=

∫ n∏
i=1

dz∗i dzi exp
(
−z†U†HDUz

)
w≡Uz−−−−→ =

∫ n∏
i=1

dz∗i dzi exp
(
−w†HDw

)
detU=1−−−−−→ =

∫ n∏
i=1

dw∗
i dwi exp

(
−w†HDw

)
=

∫ n∏
i=1

dw∗
i dwi exp (−λiw∗

i wi)

=
n∏

i=1

∫
dw∗

i dwi exp (−λiw∗
i wi)
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Since the integrals factorize, we only need to calculate one of them. Also, note that the sloppy notation of dw∗
i dwi is, in reality,

dw∗
i ∧ dwi = d(xi − iyi) ∧ d(xi + iyi)

= dxi ∧ dxi + dxi ∧ idyi − idyi ∧ dxi − dyi ∧ dyi
antisymmetric−−−−−−−−−→

property
= 2i dxi ∧ dyi

≡ 2i dxidyi
reintroducing the←−−−−−−−−−−
sloppy notation

Also, noting that w∗
i wi = x2i + y2i , we have∫

dw∗
i dwi exp (−λiw∗

i wi) = 2i

∫
dxi exp

(
−λix2i

) ∫
dyi exp

(
−λiy2i

)
= 2i

√
π

λi

√
π

λi
=

2πi

λi

Taking the product, we have ∫ n∏
i=1

dz∗i dzi exp
(
−z†Hz

)
=

n∏
i=1

∫
dw∗

i dwi exp (−λiw∗
i wi)

=

n∏
i=1

2πi

λi
=

(2πi)n

λ1 · · ·λn
=

(2πi)n

detH

To go on, we introduce z = w + b and proceed as we did above:

z∗kHklzl − J∗
kzk − Jkz

∗
k = z†Hz − J†z − z†J

= (w† + b†)H(w + b)− J†(w + b)− (w† + b†)J

= w†Hw + b†Hw + w†Hb+ b†Hb− J†w − J†b− w†J − b†J

= w†Hw + (b†H − J†)w + w†(Hb− J) + b†Hb− J†b− b†J

b=H−1J−−−−−−→
setting

= w†Hw + b†Hb− J†b− b†J

= w†Hw + J†H−1J − J†H−1J − J†H−1J

= w†Hw − J†H−1J

Putting this into our integral, we arrive at the final result:∫ n∏
i=1

dz∗i dzi exp (−z∗kHklzl + J∗
kzk + Jkz

∗
k) =

∫ n∏
i=1

dz∗i dzi exp
(
−z†Hz + J†z + z†J

)
=

∫ n∏
i=1

dw∗
i dwi exp

(
−w†Hw

)
exp

(
J†H−1J

)
=

(2πi)n

detH
exp

(
J†H−1J

)

54


